Deep Learning Methods for Universal MISO Beamforming

被引:45
作者
Kim, Junbeom [1 ]
Lee, Hoon [2 ]
Hong, Seung-Eun [3 ]
Park, Seok-Hwan [1 ]
机构
[1] Jeonbuk Natl Univ, Div Elect Engn, Jeonju 54896, South Korea
[2] Pukyong Natl Univ, Dept Informat & Commun Engn, Busan 48513, South Korea
[3] Elect & Telecommun Res Inst, Future Mobile Commun Res Div, Daejeon 34129, South Korea
基金
新加坡国家研究基金会;
关键词
Array signal processing; Optimization; Downlink; Training; Deep learning; MISO communication; Neural networks; Multi-user MISO downlink; deep learning; beamforming; interference management; unsupervised learning; OPTIMIZATION;
D O I
10.1109/LWC.2020.3007198
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This letter studies deep learning (DL) approaches to optimize beamforming vectors in downlink multi-user multi-antenna systems that can be universally applied to arbitrarily given transmit power limitation at a base station. We exploit the sum power budget as side information so that deep neural networks (DNNs) can effectively learn the impact of the power constraint in the beamforming optimization. Consequently, a single training process is sufficient for the proposed universal DL approach, whereas conventional methods need to train multiple DNNs for all possible power budget levels. Numerical results demonstrate the effectiveness of the proposed DL methods over existing schemes.
引用
收藏
页码:1894 / 1898
页数:5
相关论文
共 50 条
  • [41] Deep Learning Based Auction-Driven Beamforming for Wireless Information and Power Transfer
    Bayat, Ali
    Aissa, Sonia
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (02) : 781 - 793
  • [42] DEEP LEARNING BASED SPEECH BEAMFORMING
    Qian, Kaizhi
    Zhang, Yang
    Chang, Shiyu
    Yang, Xuesong
    Florencio, Dinei
    Hasegawa-Johnson, Mark
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 5389 - 5393
  • [43] Double Deep Learning for Joint Phase-Shift and Beamforming Based on Cascaded Channels in RIS-Assisted MIMO Networks
    Li, Kaiyue
    Huang, Chong
    Gong, Yu
    Chen, Gaojie
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2023, 12 (04) : 659 - 663
  • [44] Simultaneous Transmission and Reflection Beamforming Design for RIS-Aided MU-MISO
    Lin, Yuming
    Shen, Yuanjun
    Li, Ang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (03) : 4040 - 4045
  • [45] Robust Beamforming Design for IOS-Assisted Multiuser MISO Systems With Imperfect CSI
    Yao, Xinyi
    Hu, Fengye
    Ling, Zhuang
    Zhang, Hongliang
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (01): : 808 - 821
  • [46] Deep Learning for Energy Efficient Beamforming in MU-MISO Networks: A GAT-Based Approach
    Li, Yuhang
    Lu, Yang
    Zhang, Ruichen
    Ai, Bo
    Zhong, Zhangdui
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2023, 12 (07) : 1264 - 1268
  • [47] A Deep Learning Framework for Physical-Layer Secure Beamforming
    Song, Zihan
    Lu, Yang
    Chen, Xianhao
    Ai, Bo
    Zhong, Zhangdui
    Niyato, Dusit
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (12) : 19844 - 19849
  • [48] Interpretable and Efficient Beamforming-Based Deep Learning for Single-Snapshot DOA Estimation
    Zheng, Ruxin
    Sun, Shunqiao
    Liu, Hongshan
    Chen, Honglei
    Li, Jian
    IEEE SENSORS JOURNAL, 2024, 24 (14) : 22096 - 22105
  • [49] Unsupervised Learning for Passive Beamforming
    Gao, Jiabao
    Zhong, Caijun
    Chen, Xiaoming
    Lin, Hai
    Zhang, Zhaoyang
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (05) : 1052 - 1056
  • [50] A Novel Realistic Approach of Adaptive Beamforming Based on Deep Neural Networks
    Mallioras, Ioannis
    Zaharis, Zaharias D.
    Lazaridis, Pavlos, I
    Pantelopoulos, Stelios
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2022, 70 (10) : 8833 - 8848