Deep Learning Methods for Universal MISO Beamforming

被引:45
作者
Kim, Junbeom [1 ]
Lee, Hoon [2 ]
Hong, Seung-Eun [3 ]
Park, Seok-Hwan [1 ]
机构
[1] Jeonbuk Natl Univ, Div Elect Engn, Jeonju 54896, South Korea
[2] Pukyong Natl Univ, Dept Informat & Commun Engn, Busan 48513, South Korea
[3] Elect & Telecommun Res Inst, Future Mobile Commun Res Div, Daejeon 34129, South Korea
基金
新加坡国家研究基金会;
关键词
Array signal processing; Optimization; Downlink; Training; Deep learning; MISO communication; Neural networks; Multi-user MISO downlink; deep learning; beamforming; interference management; unsupervised learning; OPTIMIZATION;
D O I
10.1109/LWC.2020.3007198
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This letter studies deep learning (DL) approaches to optimize beamforming vectors in downlink multi-user multi-antenna systems that can be universally applied to arbitrarily given transmit power limitation at a base station. We exploit the sum power budget as side information so that deep neural networks (DNNs) can effectively learn the impact of the power constraint in the beamforming optimization. Consequently, a single training process is sufficient for the proposed universal DL approach, whereas conventional methods need to train multiple DNNs for all possible power budget levels. Numerical results demonstrate the effectiveness of the proposed DL methods over existing schemes.
引用
收藏
页码:1894 / 1898
页数:5
相关论文
共 50 条
  • [21] Spectral Efficient Beamforming for mmWave MISO Systems using Deep Learning Techniques
    Abdul Haq Nalband
    Mrinal Sarvagya
    Mohammed Riyaz Ahmed
    Arabian Journal for Science and Engineering, 2021, 46 : 9783 - 9795
  • [22] Deep Reinforcement Learning for Distributed Dynamic MISO Downlink-Beamforming Coordination
    Ge, Jungang
    Liang, Ying-Chang
    Joung, Jingon
    Sun, Sumei
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (10) : 6070 - 6085
  • [23] Unsupervised Learning Feature Estimation for MISO Beamforming by Using Spiking Neural Networks
    Ge, Xiaokai
    Hu, Xianzhi
    Dai, Xuchu
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (04) : 1165 - 1169
  • [24] Deep Learning Based Decentralized Beamforming Methods for Multi-Antenna Interference Channels
    Kim, Minseok
    Lee, Hoon
    Kim, Mintae
    Lee, Inkyu
    IEEE ACCESS, 2023, 11 : 140853 - 140866
  • [25] Deep Unsupervised Learning for Joint Antenna Selection and Hybrid Beamforming
    Liu, Zhiyan
    Yang, Yuwen
    Gao, Feifei
    Zhou, Ting
    Ma, Hongbing
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (03) : 1697 - 1710
  • [26] Hybrid Beamforming for mmWave MU-MISO Systems Exploiting Multi-Agent Deep Reinforcement Learning
    Wang, Qisheng
    Li, Xiao
    Jin, Shi
    Chen, Yijian
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (05) : 1046 - 1050
  • [27] Adaptive Ultrasound Beamforming Using Deep Learning
    Luijten, Ben
    Cohen, Regev
    de Bruijn, Frederik J.
    Schmeitz, Harold A. W.
    Mischi, Massimo
    Eldar, Yonina C.
    van Sloun, Ruud J. G.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (12) : 3967 - 3978
  • [28] AESA Adaptive Beamforming Using Deep Learning
    Bianco, Simone
    Napoletano, Paolo
    Raimondi, Alberto
    Feo, Maurizio
    Petraglia, Giovanni
    Vinetti, Pietro
    2020 IEEE RADAR CONFERENCE (RADARCONF20), 2020,
  • [29] Beamforming Design for Secure MISO Visible Light Communication Networks With SLIPT
    Liu, Xiaodong
    Wang, Yuhao
    Zhou, Fuhui
    Ma, Shuai
    Hu, Rose Qingyang
    Ng, Derrick Wing Kwan
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (12) : 7795 - 7809
  • [30] Cooperative Beamforming With Nonlinear Power Amplifiers: A Deep Learning Approach for Distributed Networks
    Jee, Jeongju
    Kwon, Girim
    Park, Hyuncheol
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (05) : 5973 - 5988