Deep Learning Methods for Universal MISO Beamforming

被引:45
作者
Kim, Junbeom [1 ]
Lee, Hoon [2 ]
Hong, Seung-Eun [3 ]
Park, Seok-Hwan [1 ]
机构
[1] Jeonbuk Natl Univ, Div Elect Engn, Jeonju 54896, South Korea
[2] Pukyong Natl Univ, Dept Informat & Commun Engn, Busan 48513, South Korea
[3] Elect & Telecommun Res Inst, Future Mobile Commun Res Div, Daejeon 34129, South Korea
基金
新加坡国家研究基金会;
关键词
Array signal processing; Optimization; Downlink; Training; Deep learning; MISO communication; Neural networks; Multi-user MISO downlink; deep learning; beamforming; interference management; unsupervised learning; OPTIMIZATION;
D O I
10.1109/LWC.2020.3007198
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This letter studies deep learning (DL) approaches to optimize beamforming vectors in downlink multi-user multi-antenna systems that can be universally applied to arbitrarily given transmit power limitation at a base station. We exploit the sum power budget as side information so that deep neural networks (DNNs) can effectively learn the impact of the power constraint in the beamforming optimization. Consequently, a single training process is sufficient for the proposed universal DL approach, whereas conventional methods need to train multiple DNNs for all possible power budget levels. Numerical results demonstrate the effectiveness of the proposed DL methods over existing schemes.
引用
收藏
页码:1894 / 1898
页数:5
相关论文
共 50 条
  • [1] Learning Robust Beamforming for MISO Downlink Systems
    Kim, Junbeom
    Lee, Hoon
    Park, Seok-Hwan
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (06) : 1916 - 1920
  • [2] A Learning-Aided Flexible Gradient Descent Approach to MISO Beamforming
    Yang, Zhixiong
    Xia, Jing-Yuan
    Luo, Junshan
    Zhang, Shuanghui
    Gunduz, Deniz
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2022, 11 (09) : 1895 - 1899
  • [3] Continual Learning-Based Fast Beamforming Adaptation in Downlink MISO Systems
    Zhou, Huan
    Xia, Wenchao
    Zhao, Haitao
    Zhang, Jun
    Ni, Yiyang
    Zhu, Hongbo
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2023, 12 (01) : 36 - 39
  • [4] Deep Learning Methods for Joint Optimization of Beamforming and Fronthaul Quantization in Cloud Radio Access Networks
    Yu, Daesung
    Lee, Hoon
    Park, Seok-Hwan
    Hong, Seung-Eun
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (10) : 2180 - 2184
  • [5] A Deep Learning Framework for Optimization of MISO Downlink Beamforming
    Xia, Wenchao
    Zheng, Gan
    Zhu, Yongxu
    Zhang, Jun
    Wang, Jiangzhou
    Petropulu, Athina P.
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (03) : 1866 - 1880
  • [6] A Review of the State of the Art and Future Challenges of Deep Learning-Based Beamforming
    Al Kassir, Haya
    Zaharis, Zaharias D.
    Lazaridis, Pavlos, I
    Kantartzis, Nikolaos, V
    Yioultsis, Traianos, V
    Xenos, Thomas D.
    IEEE ACCESS, 2022, 10 : 80869 - 80882
  • [7] Deep Learning Enabled Optimization of Downlink Beamforming Under Per-Antenna Power Constraints: Algorithms and Experimental Demonstration
    Zhang, Juping
    Xia, Wenchao
    You, Minglei
    Zheng, Gan
    Lambotharan, Sangarapillai
    Wong, Kai-Kit
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (06) : 3738 - 3752
  • [8] Deep Learning Based Efficient Symbol-Level Precoding Design for MU-MISO Systems
    Bo, Zhu
    Liu, Rang
    Li, Ming
    Liu, Qian
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (08) : 8309 - 8313
  • [9] Hybrid Beamforming Based on an Unsupervised Deep Learning Network for Downlink Channels With Imperfect CSI
    Zhang, Peng
    Pan, Liangrui
    Laohapensaeng, Teeravisit
    Chongcheawchamnan, Mitchai
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2022, 11 (07) : 1543 - 1547