On optimizing knot positions for multi-dimensional B-spline models

被引:1
作者
Deng, X [1 ]
Denney, TS [1 ]
机构
[1] Auburn Univ, Dept Elect & Comp Engn, Auburn, AL 36849 USA
来源
COMPUTATIONAL IMAGING II | 2004年 / 5299卷
关键词
B-spline; knot; tensor product;
D O I
10.1117/12.527245
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
In this paper, we present a new method for optimizing knot positions for a multi-dimensional B-spline model. Using the results from from univariate polynomial approximation theory, spline approximation theory and multivariate tensor product theory, we develop the algorithm in three steps. First, we derive a local upper bound for the L-infinity error in a multivariate B-spline tensor product approximation over a span. Second, we use this result to bound the approximation error for a multi-dimensional B-spline tensor product approximation. Third, we developed two knot position optimization methods based on the minimization of two global approximation errors: L-infinity global error and L-2 global error. We test our method with 2D surface fitting experiments using B-spline models defined in both 2D Cartesian and polar coordinates. Simulation results demonstrate that the optimized knots can fit a surface more accurately than fixed uniformly spaced knots.
引用
收藏
页码:175 / 186
页数:12
相关论文
共 9 条
[1]  
de Boor C., 1978, PRACTICAL GUIDE SPLI, DOI DOI 10.1007/978-1-4612-6333-3
[2]  
De Boor C., 1968, J Approx Theory, V1, P219, DOI [10.1016/0021-9045(68)90026-9, DOI 10.1016/0021-9045(68)90026-9]
[3]  
DIERCKX P., 1993, Monographs on Numerical Analysis
[4]  
Jain AK., 1989, Fundamentals of Digital Image Processing
[5]   APPROXIMATION TO DATA BY SPLINES WITH FREE KNOTS [J].
JUPP, DLB .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (02) :328-343
[6]  
MAMIC G, 2001, P 2001 IEEE INT C IM, V1, P169
[7]   L INFINITY-MULTIVARIATE APPROXIMATION THEORY [J].
SCHULTZ, MH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1969, 6 (02) :161-&
[8]   Splines - A perfect fit for signal and image processing [J].
Unser, M .
IEEE SIGNAL PROCESSING MAGAZINE, 1999, 16 (06) :22-38
[9]   Data fitting with a spline using a real-coded genetic algorithm [J].
Yoshimoto, F ;
Harada, T ;
Yoshimoto, Y .
COMPUTER-AIDED DESIGN, 2003, 35 (08) :751-760