S4.3 and hereditarily extremally disconnected spaces

被引:14
作者
Bezhanishvili, Guram [1 ]
Bezhanishvili, Nick [2 ]
Lucero-Bryan, Joel [3 ]
van Mill, Jan [4 ]
机构
[1] New Mexico State Univ, Dept Math Sci, Las Cruces, NM 88003 USA
[2] Univ Amsterdam, Inst Log Language & Computat, NL-1090 GE Amsterdam, Netherlands
[3] Khalifa Univ, Dept Appl Math & Sci, Abu Dhabi, U Arab Emirates
[4] Univ Amsterdam, Korteweg de Vries Inst Math, NL-1098 XG Amsterdam, Netherlands
关键词
Modal logic; topological semantics; topological completeness; hereditarily extremally disconnected space;
D O I
10.1515/gmj-2015-0041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The modal logic S4.3 defines the class of hereditarily extremally disconnected spaces (HED-spaces). We construct a countable HED-subspace X of the Gleason cover of the real closed unit interval [0, 1] such that S4.3 is the logic of X.
引用
收藏
页码:469 / 475
页数:7
相关论文
共 18 条
  • [1] [Anonymous], 1982, Cambridge Stud. Adv. Math
  • [2] [Anonymous], 1997, OXFORD LOGIC GUIDES
  • [3] Baltag A., TOPOLOGICAL TH UNPUB
  • [4] Baltag A, 2013, LECT NOTES COMPUT SC, V8196, P27, DOI 10.1007/978-3-642-40948-6_3
  • [5] Modal Logics of Stone Spaces
    Bezhanishvili, Guram
    Harding, John
    [J]. ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2012, 29 (02): : 271 - 292
  • [6] Blaszczyk A., 1993, J RAMANUJAN MATH SOC, V8, P81
  • [7] THAT ALL NORMAL EXTENSIONS OF S4.3 HAVE FINITE MODEL PROPERTY
    BULL, RA
    [J]. ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1966, 12 (04): : 341 - &
  • [8] Emov B. A., 1970, T MOSKOV MAT OBSC, V23, P235
  • [9] Engelking R., 1989, SIGMA SER PURE MATH, V6
  • [10] FINE K, 1974, THEORIA, V40, P110