Robust Feedback Stabilization of Linear MIMO Systems Using Generalized Homogenization

被引:51
作者
Zimenko, Konstantin [1 ]
Polyakov, Andrey [1 ,2 ]
Efimov, Denis [1 ,2 ]
Perruquetti, Wilfrid [2 ]
机构
[1] ITMO Univ, Fac Control Syst & Robot, St Petersburg 197101, Russia
[2] Univ Lille, INRIA, CNRS, UMR 9189,CRIStAL, F-59000 Lille, France
关键词
MIMO communication; Generators; Closed loop systems; Linear systems; Stability analysis; Symmetric matrices; Finite-time stabilization; generalized homogeneity; linear multi-input– multi-output system (MIMO) systems; FINITE-TIME STABILITY; HOMOGENEITY; DESIGN;
D O I
10.1109/TAC.2020.2969718
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A robust nonlinear control is designed for stabilizing linear multi-input-multi-output systems. The presented control law homogenizes a linear system (without its transformation to a canonical form) with a specified degree and stabilizes it in a finite time (or with a fixed-time attraction to any compact set containing the origin) if the degree of homogeneity is negative (positive). The tuning procedure is formalized in an linear matrix inequalities (LMI) form. Performance of the approach is illustrated by numerical and experimental examples.
引用
收藏
页码:5429 / 5436
页数:8
相关论文
共 31 条
  • [1] [Anonymous], 2006, TWIN ROT MIN SYST
  • [2] Bacciotti A, 2005, LYAPUNOV FUNCTIONS S
  • [3] Bernuau E., 2018, ADV VARIABLE STRUCTU, V115, P39
  • [4] Verification of ISS, iISS and IOSS properties applying weighted homogeneity
    Bernuau, Emmanuel
    Polyakov, Andrey
    Efimov, Denis
    Perruquetti, Wilfrid
    [J]. SYSTEMS & CONTROL LETTERS, 2013, 62 (12) : 1159 - 1167
  • [5] Finite-time stability of continuous autonomous systems
    Bhat, SP
    Bernstein, DS
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (03) : 751 - 766
  • [6] Geometric homogeneity with applications to finite-time stability
    Bhat, SP
    Bernstein, DS
    [J]. MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2005, 17 (02) : 101 - 127
  • [7] Boyd S, 1994, LINEAR MATRIX INEQUA
  • [8] On the matrix equation X A-A X = XP
    Burde, D
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 404 (404) : 147 - 165
  • [9] Courant R., 2000, INTRO CALCULUS ANAL, VII
  • [10] Weighted Homogeneity for Time-Delay Systems: Finite-Time and Independent of Delay Stability
    Efimov, D.
    Polyakov, A.
    Perruquetti, W.
    Richard, J. -P.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (01) : 210 - 215