Certain summation and transformation formulas for generalized hypergeometric series

被引:17
作者
Miller, Allen R. [1 ]
机构
[1] George Washington Univ, Washington, DC 20009 USA
关键词
Generalized hypergeometric series;
D O I
10.1016/j.cam.2009.05.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive summation formulas for generalized hypergeometric series of unit argument, one of which upon specialization reduces to Minton's summation theorem. As an application we deduce a reduction formula for a certain Kampe de Feriet function that in turn provides a Kummer-type transformation formula for the generalized hypergeometric function (p)F(p)(x). (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:964 / 972
页数:9
相关论文
共 10 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS
[2]  
[Anonymous], 1994, FDN COMPUTER SCI
[3]   HYPERGEOMETRIC FUNCTIONS WITH INTEGRAL PARAMETER DIFFERENCES [J].
KARLSSON, PW .
JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (02) :270-&
[4]   A summation formula for Clausen's series 3F2(1) with an application to Goursat's function 2F2(x) [J].
Miller, AR .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (16) :3541-3545
[5]  
MILLER AR, 2008, KARLSSONMINTON UNPUB
[6]   GENERALIZED HYPERGEOMETRIC FUNCTION OF UNIT ARGUMENT [J].
MINTON, BM .
JOURNAL OF MATHEMATICAL PHYSICS, 1970, 11 (04) :1375-&
[7]   A Kummer-type transformation for a 2F2 hypergeometric function [J].
Paris, RB .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 173 (02) :379-382
[8]  
Prudnikov A., 1990, More special functions (integrals and series, V3
[9]  
Schwatt I. J., 1924, An Introduction to the Operations with Series
[10]  
Srivastava H.M., 1985, Ellis Horwood Series: Mathematics and Its Applications