Statistical redundancy of instantaneous phases: theory and application to the seismic ambient wavefield

被引:9
作者
Gaudot, I. [1 ]
Beucler, E. [1 ]
Mocquet, A. [1 ]
Schimmel, M. [2 ]
Le Feuvre, M. [3 ]
机构
[1] Univ Nantes, Lab Planetol & Geodynam, UMR CNRS 6112, BP92208, F-44322 Nantes, France
[2] CSIC, Inst Earth Sci Jaume Almera, Lluis Sole & Sabaris S-N, E-08028 Barcelona, Spain
[3] LUNAM Univ, Lab Geophys & Non Destruct Evaluat, IFSTTAR, CS4, F-44344 Bouguenais, France
关键词
Time-series analysis; Interferometry; Theoretical seismology; Statistical seismology; Wave propagation; Africa; CROSS-CORRELATIONS; FREE OSCILLATIONS; NOISE; MICROSEISMS; EXCITATION;
D O I
10.1093/gji/ggv501
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In order to detect possible signal redundancies in the ambient seismic wavefield, we develop a new method based on pairwise comparisons among a set of synchronous time-series. This approach is based on instantaneous phase coherence statistics. The first and second moments of the pairwise phase coherence distribution are used to characterize the phase randomness. For perfect phase randomness, the theoretical values of the mean and variance are equal to 0 and root 1 - 2/pi, respectively. As a consequence, any deviation from these values indicates the presence of a redundant phase in the raw continuous signal. A previously detected microseismic source in the Gulf of Guinea is used to illustrate one of the possible ways of handling phase coherence statistics. The proposed approach allows us to properly localize this persistent source, and to quantify its contribution to the overall seismic ambient wavefield. The strength of the phase coherence statistics relies in its ability to quantify the redundancy of a given phase among a set of time-series with various useful applications in seismic noise-based studies (tomography and/or source characterization).
引用
收藏
页码:1159 / 1163
页数:5
相关论文
共 28 条
[1]  
[Anonymous], LEAD EDGE, DOI DOI 10.1190/1.1436827
[2]   Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements [J].
Bensen, G. D. ;
Ritzwoller, M. H. ;
Barmin, M. P. ;
Levshin, A. L. ;
Lin, F. ;
Moschetti, M. P. ;
Shapiro, N. M. ;
Yang, Y. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2007, 169 (03) :1239-1260
[3]   Postseismic relaxation along the San Andreas fault at Parkfield from continuous seismological observations [J].
Brenguier, F. ;
Campillo, M. ;
Hadziioannou, C. ;
Shapiro, N. M. ;
Nadeau, R. M. ;
Larose, E. .
SCIENCE, 2008, 321 (5895) :1478-1481
[4]   Migration imaging and forward modeling of microseismic noise sources near southern Italy [J].
Brzak, Keith ;
Gu, Yu Jeffrey ;
Okeler, Ahmet ;
Steckler, Michael ;
Lerner-Lam, Arthur .
GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2009, 10
[5]   Phase and correlation in 'Random' seismic fields and the reconstruction of the green function [J].
Campillo, M .
PURE AND APPLIED GEOPHYSICS, 2006, 163 (2-3) :475-502
[6]   Inferring Ocean Storm Characteristics from Ambient Seismic Noise: A Historical Perspective [J].
Ebeling, Carl W. .
ADVANCES IN GEOPHYSICS, VOL 53, 2012, 53 :1-33
[7]  
Gabor D., 1946, J. Inst. Electr. Eng. (London), V93, P429, DOI [DOI 10.1049/JI-3-2.1946.0074, 10.1049/JI-3-2.1946.0074, 10.1049/ji-3-2.1946.0074]
[8]   Global P, PP, and PKP wave microseisms observed from distant storms [J].
Gerstoft, Peter ;
Shearer, Peter M. ;
Harmon, Nick ;
Zhang, Jian .
GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (23)
[9]   Performance of different processing schemes in seismic noise cross-correlations [J].
Groos, J. C. ;
Bussat, S. ;
Ritter, J. R. R. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2012, 188 (02) :498-512
[10]  
HOLCOMB LG, 1980, B SEISMOL SOC AM, V70, P1055