Quantum cascade structure for mid-IR four-wave mixing

被引:0
作者
Hekmat, Baktash [1 ]
Aahmadi, Vahid [2 ]
Darabi, Elham [3 ]
机构
[1] Islamic Azad Univ, Since & Res Branch, Dept Elect Engn, Tehran 1477893855, Iran
[2] Tarbiat Modares Univ, Dept Elect & Comp Engn, Tehran 1411713116, Iran
[3] Islamic Azad Univ, Since & Res Branch, Plasma Phys Res Ctr, Tehran 1477893855, Iran
关键词
Quantum cascade; Third order susceptibility; Optical pulse amplification; Optical amplifier; Four-wave mixing; SEMICONDUCTORS; LASERS;
D O I
10.1016/j.physe.2014.07.003
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The design and modeling of a quantum cascade optical amplifier (QCOA) using intra-cavity non-linear interactions to achieve wavelength conversion is proposed. The model is based on the nonlinear equation coupled with Maxwell wave equations for different emission modes. In the proposed structure, four wave mixing (FWM) output exhibits a peak as a function of pump and probe frequency if they are tuned to the energy levels of the QC structure subbands. Results demonstrate that the FWM output signal power significantly depends on how subbands are engineered and interact with optical pulses which propagate in multi layer medium. In addition, we show that by adjusting pump and probe signal frequencies, FWM output power can be tuned. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:117 / 121
页数:5
相关论文
共 16 条
[1]   Intracavity nonlinearities in quantum-cascade lasers [J].
Bai, Jing ;
Citrin, D. S. .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (03)
[2]   Tunable quantum cascade lasers with phase-matched third harmonic generation [J].
Banerjee, S. ;
Spencer, P. S. ;
Shore, K. A. .
APPLIED PHYSICS LETTERS, 2006, 89 (05)
[3]   COUPLED-QUANTUM-WELL SEMICONDUCTORS WITH GIANT ELECTRIC-FIELD TUNABLE NONLINEAR-OPTICAL PROPERTIES IN THE INFRARED [J].
CAPASSO, F ;
SIRTORI, C ;
CHO, AY .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1994, 30 (05) :1313-1326
[4]   Self-Consistent Approach for Quantum Cascade Laser Characteristic Simulation [J].
Chen, Gang ;
Yang, Tao ;
Peng, Chen ;
Martini, Rainer .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2011, 47 (08) :1086-1093
[5]   Second harmonic generation in (111)-oriented InP-based quantum cascade laser [J].
Giovannini, Marcella ;
Beck, Mattias ;
Hoyler, Nicolas ;
Faist, Jerome .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (10)
[6]   Dependence of the device performance on the number of stages in quantum-cascade lasers [J].
Gmachl, C ;
Capasso, F ;
Tredicucci, A ;
Sivco, DL ;
Köhler, R ;
Hutchinson, AL ;
Cho, AY .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1999, 5 (03) :808-816
[7]   SYNTHETIC NON-LINEAR SEMICONDUCTORS [J].
GURNICK, MK ;
DETEMPLE, TA .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1983, 19 (05) :791-794
[8]  
Harrison P., 2009, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures
[9]   Enhanced four-wave mixing in quantum cascade semiconductor optical amplifier [J].
Hekmat, Baktash ;
Ahmadi, Vahid ;
Darabi, Elham .
APPLIED OPTICS, 2013, 52 (12) :2828-2833
[10]   Room-temperature operation of 3.6 μm In0.53Ga0.47As/Al0.48In0.52As quantum cascade laser sources based on intracavity second harmonic generation [J].
Jang, M. ;
Adams, R. W. ;
Chen, J. X. ;
Charles, W. O. ;
Gmachl, C. ;
Cheng, L. W. ;
Choa, F-S ;
Belkin, M. A. .
APPLIED PHYSICS LETTERS, 2010, 97 (14)