Global solutions for the generalized Camassa-Holm equation

被引:5
作者
Chen, Lina [1 ]
Guan, Chunxia [1 ]
机构
[1] Guangdong Univ Technol, Dept Math, Guangzhou 510520, Peoples R China
关键词
A generalized Camassa-Holm equation; Global strong solutions; Global weak solutions; SHALLOW-WATER EQUATION; BLOW-UP PHENOMENA; WELL-POSEDNESS; WEAK SOLUTIONS; INTEGRABLE EQUATION; CAUCHY-PROBLEM; CONSERVATIVE SOLUTIONS; EXISTENCE; BREAKING;
D O I
10.1016/j.nonrwa.2020.103227
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the Cauchy problem of the generalized Camassa-Holm equation. Firstly, we prove the existence of the global strong solutions provide the initial data satisfying a certain sign condition. Then, we obtain the existence and the uniqueness of the global weak solutions under the same sign condition of the initial data. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 36 条
[1]   Global analyticity for a generalized Camassa-Holm equation and decay of the radius of spatial analyticity [J].
Barostichi, Rafael F. ;
Himonas, A. Alexandrou ;
Petronilho, Gerson .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (01) :732-764
[2]   Global conservative solutions of the Camassa-Holm equation [J].
Bressan, Alberto ;
Constantin, Adrian .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 183 (02) :215-239
[3]   UNIQUENESS OF CONSERVATIVE SOLUTIONS TO THE CAMASSA-HOLM EQUATION VIA CHARACTERISTICS [J].
Bressan, Alberto ;
Chen, Geng ;
Zhang, Qingtian .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (01) :25-42
[4]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[5]   On the well-posedness of the Degasperis-Procesi equation [J].
Coclite, GM ;
Karlsen, KH .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 233 (01) :60-91
[6]   Geodesic flow on the diffeomorphism group of the circle [J].
Constantin, A ;
Kolev, B .
COMMENTARII MATHEMATICI HELVETICI, 2003, 78 (04) :787-804
[7]  
Constantin A, 1998, COMMUN PUR APPL MATH, V51, P475, DOI 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO
[8]  
2-5
[9]   Wave breaking for nonlinear nonlocal shallow water equations [J].
Constantin, A ;
Escher, J .
ACTA MATHEMATICA, 1998, 181 (02) :229-243
[10]  
Constantin A, 1999, COMMUN PUR APPL MATH, V52, P949, DOI 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO