Some integral inequalities for interval-valued functions

被引:115
作者
Roman-Flores, H. [1 ]
Chalco-Cano, Y. [1 ]
Lodwick, W. A. [2 ]
机构
[1] Univ Tarapaca, Inst Alta Invest, Casilla 7D, Arica, Chile
[2] Univ Colorado, Dept Math & Stat Sci, Denver, CO 80217 USA
基金
巴西圣保罗研究基金会;
关键词
Interval-valued functions; Minkowski's inequality; Radon's inequality; Beckenbach' inequality; CHEBYSHEV TYPE INEQUALITIES; HARDY-TYPE INEQUALITY; FUZZY INTEGRALS; CALCULUS;
D O I
10.1007/s40314-016-0396-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we explore some integral inequalities for interval-valued functions. More precisely, using the Kulisch-Miranker order on the space of real and compact intervals, we establish Minkowski's inequality and then we derive Beckenbach's inequality via an interval Radon's inequality. Also, some examples and applications are presented for illustrating our results.
引用
收藏
页码:1306 / 1318
页数:13
相关论文
共 41 条
[1]   General Chebyshev type inequalities for universal integral [J].
Agahi, Hamzeh ;
Mesiar, Radko ;
Ouyang, Yao ;
Pap, Endre ;
Strboja, Mirjana .
INFORMATION SCIENCES, 2012, 187 :171-178
[2]   Holder and Minkowski type inequalities for pseudo-integral [J].
Agahi, Hamzeh ;
Yao Ouyang ;
Mesiar, Radko ;
Pap, Endre ;
Strboja, Mirjana .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (21) :8630-8639
[3]   General Barnes-Godunova-Levin type inequalities for Sugeno integral [J].
Agahi, Hamzeh ;
Roman-Flores, H. ;
Flores-Franulic, A. .
INFORMATION SCIENCES, 2011, 181 (06) :1072-1079
[4]   General Minkowski type inequalities for Sugeno integrals [J].
Agahi, Hamzeh ;
Mesiar, Radko ;
Yao Ouyang .
FUZZY SETS AND SYSTEMS, 2010, 161 (05) :708-715
[5]  
[Anonymous], 2009, GEN MEASURE THEORY
[6]  
[Anonymous], 1985, Computational functional analysis
[7]  
[Anonymous], 2011, ADV INEQUALITIES
[8]  
AUBIN J. P., 1990, Set-valued analysis, V2, DOI [10.1007/978-0-8176-4848-0, DOI 10.1007/978-0-8176-4848-0]
[9]   Introduction: Set-valued analysis in control theory [J].
Aubin, JP ;
Frankowska, H .
SET-VALUED ANALYSIS, 2000, 8 (1-2) :1-9
[10]  
Aubin JP., 1984, Differential Inclusions: Set Valued Maps and Viability Theory