An atomic force microscopy study of calcite dissolution in saline solutions: The role of magnesium ions

被引:103
作者
Ruiz-Agudo, E. [1 ]
Putnis, C. V. [2 ]
Jimenez-Lopez, C. [3 ]
Rodriguez-Navarro, C. [1 ]
机构
[1] Univ Granada, Dept Mineral & Petrol, Granada 18002, Spain
[2] Univ Munster, Inst Mineral, D-48149 Munster, Germany
[3] Univ Granada, Dept Microbiol, Granada 18002, Spain
关键词
CARBONATE MINERALS; AQUEOUS-SOLUTION; KINETICS; SURFACE; GROWTH; RATES; INHIBITION; WATER; MG2+; SOLUBILITY;
D O I
10.1016/j.gca.2009.03.016
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In situ Atomic Force Microscopy, AFM, experiments have been carried Out using calcite cleavage surfaces in contact with solutions of MgSO4, MgCl2, Na2SO4 and NaCl in order to attempt to understand the role of Mg2+ during calcite dissolution. Although previous work has indicated that magnesium inhibits calcite dissolution, quantitative AFM analyses show that despite the fact that Mg2+ inhibits etch pit spreading, it increases the density and depth of etch pits nucleated oil calcite surfaces and, subsequently, the overall dissolution rates: i.e., froin 10(-11.75) mol cm(-2) s(-1) (in deionized water) up to 10(-10.54) mol cm(-2) s(-1) (in 2.8 M MgSO4). Such an effect is concentration-clepenclent and it is most evident in concentrated solutions ([Mg2+] >> 50 mM). These results show that common soluble salts (especially Mg sulfates) may play it critical role in the chemical weathering of carbonate rocks in nature its well as in the decay of carbonate stone in buildings and statuary. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3201 / 3217
页数:17
相关论文
共 76 条
[11]   Complexity in "simple" electrolyte solutions:: Ion pairing in MgSO4(aq) [J].
Buchner, R ;
Chen, T ;
Hefter, G .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (07) :2365-2375
[12]   CALCITE DISSOLUTION KINETICS IN THE SYSTEM H2O-CO2-CACO3 WITH PARTICIPATION OF FOREIGN IONS [J].
BUHMANN, D ;
DREYBRODT, W .
CHEMICAL GEOLOGY, 1987, 64 (1-2) :89-102
[13]   ELECTROKINETIC PROPERTIES OF THE CALCITE WATER INTERFACE IN THE PRESENCE OF MAGNESIUM AND ORGANIC-MATTER [J].
CICERONE, DS ;
REGAZZONI, AE ;
BLESA, MA .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1992, 154 (02) :423-433
[14]   THE INHIBITION OF CALCITE DISSOLUTION PRECIPITATION - MG2+ CATIONS [J].
COMPTON, RG ;
BROWN, CA .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1994, 165 (02) :445-449
[15]   A MODEL FOR TRACE-METAL SORPTION PROCESSES AT THE CALCITE SURFACE - ADSORPTION OF CD-2+ AND SUBSEQUENT SOLID-SOLUTION FORMATION [J].
DAVIS, JA ;
FULLER, CC ;
COOK, AD .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1987, 51 (06) :1477-1490
[16]   The role of Mg2+ as an impurity in calcite growth [J].
Davis, KJ ;
Dove, PM ;
De Yoreo, JJ .
SCIENCE, 2000, 290 (5494) :1134-1137
[17]  
Davis KJ, 2004, AM MINERAL, V89, P714
[18]  
De Giudici G, 2002, AM MINERAL, V87, P1279
[19]   Molecular dynamics simulations of the growth inhibiting effect of Fe2+, Mg2+, Cd2+, and Sr2+ on calcite crystal growth [J].
de Leeuw, NH .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (20) :5241-5249
[20]   Surface-water interactions in the dolomite problem [J].
de Leeuw, NH ;
Parker, SC .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2001, 3 (15) :3217-3221