The specific rates of growth, substrate utilization, and ethanol production as well as yields of biomass and ethanol production on xylose for the recombinant Zymomonas mobilis ZM4(pZB5) were shown to be much less than those on glucose or glucose-xylose mixtures, Typical fermentations with ZM4(pZB5) growing on glucose-xylose mixtures followed two-phase growth kinetics with the initial uptakes of glucose and xylose being follow ed by slower growth and metabolic uncoupling on xylose after glucose depletion. The reductions in rates and yields from xylose metabolism were considered in the present investigation and may be due to a number of factors, including the following: (i) the increased metabolic burden from maintenance of plasmid-related functions, (ii) the production of by-products identified as xylitol, acetate, lactate, acetoin, and dihydroxyacetone by C-13-nuclear magnetic resonance (NR-IR) spectroscopy and high-performance liquid chromatography, (iii) growth inhibition due to xylitol by the putative inhibitory compound xylitol phosphate, and (iv) the less energized state of ZM4(pZB5). In vivo P-31-NMR studies have established that the levels of NTP and UDP sugars on xylose were less than those on glucose, and this energy limitation is likely to restrict the growth of the recombinant strain on xylose media.