On a boundary-value problem for the parabolic-hyperbolic equation with the fractional derivative and the sewing condition of the integral form

被引:6
作者
Berdyshev, Abdumauvlen S. [1 ]
Karimov, Erkinjon T. [2 ]
Akhtaeva, Nazgul S. [1 ]
机构
[1] Kazakh Natl Pedag Univ, Alma Ata 050010, Kazakhstan
[2] Natl Univ Uzbekistan, Inst Math, Tashkent 100125, Uzbekistan
来源
INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2014) | 2014年 / 1611卷
关键词
Fractional derivative; Mixed type equation; Sewing condition; Green's function;
D O I
10.1063/1.4893817
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main aim of the present work is an investigation of the analogue of the Tricomi problem with the integral sewing condition for parabolic-hyperbolic equation with the fractional derivative. The uniqueness of the solution for considered problem we prove by the method of energy integrals. The existence of the solution have been proved by reducing the considered problem to the Fredholm integral equation. We represent solution in an explicit form using Green's function.
引用
收藏
页码:133 / 137
页数:5
相关论文
共 15 条
[1]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[2]   On numerical solutions for hyperbolic-parabolic equations with the multipoint nonlocal boundary condition [J].
Ashyralyev, Allaberen ;
Ozdemir, Yildirim .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2014, 351 (02) :602-630
[3]   On the Numerical Solution of Fractional Hyperbolic Partial Differential Equations [J].
Ashyralyev, Allaberen ;
Dal, Fadime ;
Pinar, Zehra .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2009, 2009
[4]   Boundary Value Problems with Integral Gluing Conditions for Fractional-Order Mixed-Type Equation [J].
Berdyshev, A. S. ;
Karimov, E. T. ;
Akhtaeva, N. .
INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 2011
[5]   On a non-local boundary problem for a parabolic-hyperbolic equation involving a Riemann-Liouville fractional differential operator [J].
Berdyshev, A. S. ;
Cabada, A. ;
Karimov, E. T. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (06) :3268-3273
[6]   On the Volterra property of a boundary problem with integral gluing condition for a mixed parabolic-hyperbolic equation [J].
Berdyshev, Abdumauvlen S. ;
Cabada, Alberto ;
Karimov, Erkinjon T. ;
Akhtaeva, Nazgul S. .
BOUNDARY VALUE PROBLEMS, 2013,
[7]  
Djuraev TD., 1986, Boundary value problems for the problems for the parabolic-hyperbolic type equations
[8]   Boundary value problems with continuous and special gluing conditions for parabolic-hyperbolic type equations [J].
Eshmatov, B. E. ;
Karimov, E. T. .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2007, 5 (04) :741-750
[9]  
Kapustin NY, 1997, DIFF EQUAT+, V33, P116
[10]  
Karimov E.T., 2007, PANAMER MATH J, V17, P11