On the Lucas sequence equation 1/Un = Σk=1∞ Uk-1/xk

被引:0
|
作者
Tengely, Szabolcs [1 ]
机构
[1] Univ Derecen, Math Inst, H-4010 Debrecen, Hungary
关键词
Lucas sequences; Diophantine equations; Elliptic curves; ELLIPTIC DIOPHANTINE EQUATIONS; ESTIMATING LINEAR-FORMS; INTEGER SOLUTIONS; FRACTIONS;
D O I
10.1007/s10998-015-0101-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 1953 Stancliff noted an interesting property of the Fibonacci number F-11 = 89. One has that 1/89 = 0/10 + 1/10(2) + 1/10(3) + 2/10(4) + 3/10(5) + 5/10(6) + ..., where in the numerators the elements of the Fibonacci sequence appear. We provide methods to determine similar identities in case of Lucas sequences. As an example we prove that 1/U-10 = 1/416020 = Sigma(infinity)(k=0) U-k/647(k+1), where U-0 = 0, U-1 = 1 and U-n = 4U(n-1) + Un-2, n >= 2.
引用
收藏
页码:236 / 242
页数:7
相关论文
共 50 条
  • [31] Solutions to xyz=1 and x plus y plus z = k in algebraic integers of small degree, I
    Grundman, H. G.
    Hall-Seelig, L. L.
    ACTA ARITHMETICA, 2014, 162 (04) : 381 - 392
  • [32] On the Diophantine equations of the form λ1Un1+λ2Un2+⋯+λkUnk=wp1z1p2z2⋯pszs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _1U_{n_1} + \lambda _2U_{n_2} +\cdots + \lambda _kU_{n_k} = wp_1^{z_1}p_2^{z_2} \cdots p_s^{z_s}$$\end{document}
    Eva Goedhart
    Brian Ha
    Lily McBeath
    Luisa Velasco
    Boletín de la Sociedad Matemática Mexicana, 2024, 30 (3)
  • [33] On the Diophantine equation (5pn2 -1)x + (p(p-5)n2 +1)y = (pn)z
    Alahmadi, Adel
    Luca, Florian
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2022, 65 (01): : 3 - 12
  • [34] Elementary solution to the diaphantine equation x3=y2-1
    Notari, C
    EXPOSITIONES MATHEMATICAE, 2003, 21 (03) : 279 - 283
  • [35] On the Positive Integral Solutions of the Diophantine Equation x3 + by+1-xyz=0
    Luca, Florian
    Togbe, Alain
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2008, 31 (02) : 129 - 134
  • [36] Special Subsets of Addresses for Blockchains Using the secp256k1 Curve
    Di Scala, Antonio J.
    Gangemi, Andrea
    Romeo, Giuliano
    Vernetti, Gabriele
    MATHEMATICS, 2022, 10 (15)
  • [37] On the diophantine equation X2-(1+a2)Y4 =-2a
    YUAN PingZhi 1 & ZHANG ZhongFeng 2 1 School of Mathematics
    2 School of Mathematics & Computational Science
    Science China(Mathematics), 2010, 53 (08) : 2143 - 2158
  • [38] On the diophantine equation X2-(1+a2)Y4=-2a
    Yuan PingZhi
    Zhang ZhongFeng
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (08) : 2143 - 2158
  • [39] On the diophantine equation X2 − (1 + a2)Y4 = −2a
    PingZhi Yuan
    ZhongFeng Zhang
    Science China Mathematics, 2010, 53 : 2143 - 2158
  • [40] Fast Endomorphisms in Integer Sub-Decomposition Method on Secp192k1
    Antony, S. N. F. M. A.
    Yion, C. H. K.
    Kamarulhaili, H.
    Ariffin, M. R. K.
    Yunos, F.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2024, 18 (03): : 501 - 514