Symmetry breaking in tensor models

被引:9
作者
Benedetti, Dario [1 ]
Gurau, Razvan [2 ,3 ]
机构
[1] Univ Paris 11, CNRS UMR 8627, Lab Phys Theor, F-91405 Orsay, France
[2] Ecole Polytech, CNRS UMR 7644, Ctr Phys Theor, F-91128 Palaiseau, France
[3] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
来源
PHYSICAL REVIEW D | 2015年 / 92卷 / 10期
关键词
1/N EXPANSION; GRAVITY; RENORMALIZATION;
D O I
10.1103/PhysRevD.92.104041
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper we analyze a quartic tensor model with one interaction for a tensor of arbitrary rank. This model has a critical point where a continuous limit of infinitely refined random geometries is reached. We show that the critical point corresponds to a phase transition in the tensor model associated to a breaking of the unitary symmetry. We analyze the model in the two phases and prove that, in a double scaling limit, the symmetric phase corresponds to a theory of infinitely refined random surfaces, while the broken phase corresponds to a theory of infinitely refined random nodal surfaces. At leading order in the double scaling limit planar surfaces dominate in the symmetric phase, and planar nodal surfaces dominate in the broken phase.
引用
收藏
页数:13
相关论文
共 42 条
[1]   3-DIMENSIONAL SIMPLICIAL QUANTUM-GRAVITY AND GENERALIZED MATRIX MODELS [J].
AMBJORN, J ;
DURHUUS, B ;
JONSSON, T .
MODERN PHYSICS LETTERS A, 1991, 6 (12) :1133-1146
[2]  
Ambjorn J, 1997, QUANTUM GEOMETRY STA
[3]   Ten questions on Group Field Theory (and their tentative answers) [J].
Baratin, Aristide ;
Oriti, Daniele .
LOOPS 11: NON-PERTURBATIVE / BACKGROUND INDEPENDENT QUANTUM GRAVITY, 2012, 360
[4]  
Ben Geloun J, 2014, COMMUN MATH PHYS, V332, P117, DOI 10.1007/s00220-014-2142-6
[5]   A Renormalizable 4-Dimensional Tensor Field Theory [J].
Ben Geloun, Joseph ;
Rivasseau, Vincent .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 318 (01) :69-109
[6]   Two- and four-loop β-functions of rank-4 renormalizable tensor field theories [J].
Ben Geloun, Joseph .
CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (23)
[7]   Enhancing non-melonic triangulations: A tensor model mixing melonic and planar maps [J].
Bonzom, Valentin ;
Delepouve, Thibault ;
Rivasseau, Vincent .
NUCLEAR PHYSICS B, 2015, 895 :161-191
[8]   The double scaling limit of random tensor models [J].
Bonzom, Valentin ;
Gurau, Razvan ;
Ryan, James P. ;
Tanasa, Adrian .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (09)
[9]   Random tensor models in the large N limit: Uncoloring the colored tensor models [J].
Bonzom, Valentin ;
Gurau, Razvan ;
Rivasseau, Vincent .
PHYSICAL REVIEW D, 2012, 85 (08)
[10]   Critical behavior of colored tensor models in the large N limit [J].
Bonzom, Valentin ;
Gurau, Razvan ;
Riello, Aldo ;
Rivasseau, Vincent .
NUCLEAR PHYSICS B, 2011, 853 (01) :174-195