On toric varieties which are almost set-theoretic complete intersections

被引:1
作者
Barile, Margherita [1 ]
机构
[1] Univ Bari, Dipartimento Matemat, I-70125 Bari, Italy
关键词
D O I
10.1016/j.jpaa.2005.09.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe a class of affine toric varieties V that are set-theoretically minimally defined by codimV + 1 binomial equations over fields of any characteristic. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:109 / 118
页数:10
相关论文
共 17 条
[1]   Set-theoretic complete intersections in characteristic p [J].
Barile, M ;
Lyubeznik, G .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (11) :3199-3209
[2]   On simplicial toric varieties which are set-theoretic complete intersections [J].
Barile, M ;
Morales, M ;
Thoma, A .
JOURNAL OF ALGEBRA, 2000, 226 (02) :880-892
[3]   Set-theoretic complete intersections on binomials [J].
Barile, M ;
Morales, M ;
Thoma, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (07) :1893-1903
[4]  
BARILE M, IN PRESS REND CIRC M
[5]  
BARILE M, 2005, ARXIVMATHAG0504052
[6]   MONOMIAL GORENSTEIN CURVES IN A4 AS SET-THEORETIC COMPLETE INTERSECTIONS [J].
BRESINSKY, H .
MANUSCRIPTA MATHEMATICA, 1979, 27 (04) :353-358
[7]   THE NUMBER OF EQUATIONS DEFINING A DETERMINANTAL VARIETY [J].
BRUNS, W ;
SCHWANZL, R .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1990, 22 :439-445
[8]   Lazard's theorem for differential algebraic groups and proalgebraic groups [J].
Chalupnik, M ;
Kowalski, P .
PACIFIC JOURNAL OF MATHEMATICS, 2002, 202 (02) :305-312
[9]  
*COCOATEAM, CO COA SYST DOING CO
[10]  
ELIAHOU S, 1984, LECT NOTES MATH, V1092, P229