Myelin-targeted, texaphyrin-based multimodal imaging agent for magnetic resonance and optical imaging

被引:9
|
作者
Vithanarachchi, Sashiprabha M. [1 ,2 ]
Foley, Casey D. [1 ]
Trimpin, Sarah [1 ]
Ewing, James R. [3 ]
Ali, Meser M. [3 ]
Allen, Matthew J. [1 ]
机构
[1] Wayne State Univ, Dept Chem, 5101 Cass Ave, Detroit, MI 48202 USA
[2] Univ Colombo, Dept Chem, Colombo 03, Sri Lanka
[3] Henry Ford Hosp, Dept Neurol, Detroit, MI 48202 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
contrast agents; gadolinium; MRI; multimodal probes; myelin; optical imaging; paramagnetic agents; texaphyrin; WHITE-MATTER; BRAIN; MRI; RELAXOMETRY; TOMOGRAPHY;
D O I
10.1002/cmmi.1711
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Reliable methods of imaging myelin are essential to investigate the causes of demyelination and to study drugs that promote remyelination. Myelin-specific compounds can be developed into imaging probes to detect myelin with various imaging techniques. The development of multimodal myelin-specific imaging probes enables the use of orthogonal imaging techniques to accurately visualize myelin content and validate experimental results. Here, we describe the synthesis and application of multimodal myelin-specific imaging agents for light microscopy and magnetic resonance imaging. The imaging agents were synthesized by incorporating the structural features of luxol fast blue MBS, a myelin-specific histological stain, into texaphyrins coordinated to Gd-III. These new complexes demonstrated absorption of visible light, emission of near-IR light, and relaxivity values greater than clinically approved contrast agents for magnetic resonance imaging. These properties enable the use of optical imaging and magnetic resonance imaging for visualization of myelin. We performed section- and en block-staining of ex vivo mouse brains to investigate the specificity for myelin of the new compounds. Images obtained from light microscopy and magnetic resonance imaging demonstrate that our complexes are retained in white matter structures and enable detection of myelin. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:492 / 505
页数:14
相关论文
共 50 条
  • [31] Multifunctional silica nanoparticles for optical and magnetic resonance imaging
    Joshi, Rajendra
    Feldmann, Verena
    Koestner, Wolfgang
    Detje, Claudia
    Gottschalk, Sven
    Mayer, Hermann A.
    Sauer, Martin G.
    Engelmann, Joern
    BIOLOGICAL CHEMISTRY, 2013, 394 (01) : 125 - 135
  • [32] Automated fusion of multimodal imaging data for identifying epileptogenic lesions in patients with inconclusive magnetic resonance imaging
    Marecek, Radek
    Riha, Pavel
    Bartonova, Michaela
    Kojan, Martin
    Lamos, Martin
    Gajdos, Martin
    Vojtisek, Lubomir
    Mikl, Michal
    Barton, Marek
    Dolezalova, Irena
    Pail, Martin
    Strycek, Ondrej
    Pazourkova, Marta
    Brazdil, Milan
    Rektor, Ivan
    HUMAN BRAIN MAPPING, 2021, 42 (09) : 2921 - 2930
  • [33] Fluorinated EuII-based multimodal contrast agent for temperature- and redox-responsive magnetic resonance imaging
    Basal, Lina A.
    Bailey, Matthew D.
    Romero, Jonathan
    Ali, Meser M.
    Kurenbekova, Lyazat
    Yustein, Jason
    Pautler, Robia G.
    Allen, Matthew J.
    CHEMICAL SCIENCE, 2017, 8 (12) : 8345 - 8350
  • [34] Bladder Cancer Photodynamic Therapeutic Agent with Off-On Magnetic Resonance Imaging Enhancement
    Xie, Chen
    Chau, Ho-Fai
    Zhang, Jing-Xiang
    Tong, Sheng
    Jiang, Lijun
    Fok, Wan-Yiu
    Lung, Hong-Lok
    Zha, Shuai
    Zou, Rui
    Jiao, Ju
    Ng, Chi-Fai
    Ma, Ping'an
    Zhang, Junhui
    Lin, Jun
    Shiu, Kwok Keung
    Bunzli, Jean-Claude G.
    Wong, Wai-Kwok
    Long, Nicholas J.
    Law, Ga-Lai
    Wong, Ka-Leung
    ADVANCED THERAPEUTICS, 2019, 2 (11)
  • [35] Genetic Encoding of Targeted Magnetic Resonance Imaging Contrast Agents for Tumor Imaging
    Schuerle, Simone
    Furubayashi, Maiko
    Soleimany, Ava P.
    Gwisai, Tinotenda
    Huang, Wei
    Voigt, Christopher
    Bhatia, Sangeeta N.
    ACS SYNTHETIC BIOLOGY, 2020, 9 (02): : 392 - 401
  • [36] Combining magnetic resonance imaging and ultrawideband radar: A new concept for multimodal biomedical imaging
    Thiel, F.
    Hein, M.
    Schwarz, U.
    Sachs, J.
    Seifert, F.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2009, 80 (01)
  • [37] Ultrashort echo time (UTE) magnetic resonance imaging of myelin: technical developments and challenges
    Ma, Ya-Jun
    Jang, Hyungseok
    Chang, Eric Y.
    Hiniker, Annie
    Head, Brian P.
    Lee, Roland R.
    Corey-Bloom, Jody
    Bydder, Graeme M.
    Du, Jiang
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2020, 10 (06) : 1186 - 1203
  • [38] Multimodal Magnetic Resonance Imaging in Alzheimer's Disease Patients at Prodromal Stage
    Eustache, Pierre
    Nemmi, Federico
    Saint-Aubert, Laure
    Pariente, Jeremie
    Peran, Patrice
    JOURNAL OF ALZHEIMERS DISEASE, 2016, 50 (04) : 1035 - 1050
  • [39] Assessment of white matter hyperintensity severity using multimodal magnetic resonance imaging
    Parent, Olivier
    Bussy, Aurelie
    Devenyi, Gabriel Allan
    Dai, Alyssa
    Costantino, Manuela
    Tullo, Stephanie
    Salaciak, Alyssa
    Bedford, Saashi
    Farzin, Sarah
    Beland, Marie-Lise
    Valiquette, Vanessa
    Villeneuve, Sylvia
    Poirier, Judes
    Tardif, Christine Lucas
    Dadar, Mahsa
    PREVENT AD Res Grp
    Chakravarty, M. Mallar
    BRAIN COMMUNICATIONS, 2023, 5 (06)
  • [40] Fabrication of a Multimodal Microbubble Platform for Magnetic Resonance, Ultrasound and Fluorescence Imaging Application
    Miao, Zhaohua
    Guo, Caixin
    Li, Zhenglin
    Jin, Yushen
    Ke, Hengte
    Dai, Zhifei
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (03) : 2301 - 2306