Kovalevskaya top: An elementary approach

被引:7
作者
Perelomov, AM [1 ]
机构
[1] Inst Theoret & Expt Phys, Moscow 117259, Russia
[2] Univ Oviedo, Fac Ciencias, Dept Fis, Oviedo, Spain
关键词
classical integrable systems; exact solutions;
D O I
10.1023/A:1015416529917
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give all elementary, very short solution to the equations of motion for the Kovalevskaya top, using some results from the original papers by, Kovalevskaya, Kotter, and Weber and also the Lax representation obtained by the author.
引用
收藏
页码:612 / 620
页数:9
相关论文
共 20 条
[1]   THE KOWALEWSKI AND HENON-HEILES MOTIONS AS MANAKOV GEODESIC-FLOWS ON SO(4) - A TWO-DIMENSIONAL FAMILY OF LAX PAIRS [J].
ADLER, M ;
VANMOERBEKE, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 113 (04) :659-700
[2]   THE KOWALEWSKI TOP 99 YEARS LATER - A LAX PAIR, GENERALIZATIONS AND EXPLICIT SOLUTIONS [J].
BOBENKO, AI ;
REYMAN, AG ;
SEMENOVTIANSHANSKY, MA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 122 (02) :321-354
[3]  
Clebsch A., 1871, Math. Ann., V3, P238
[4]  
Dullin H. R., 1998, REGUL CHAOTIC DYN, V3, P18
[6]  
ENOLSKII VZ, 1984, SOV MATH DOKL, V30, P394
[7]  
KOLOSOV GV, 1902, MATH ANN, V56, P265
[8]  
KOTTER F, 1893, ACTA MATH, V17, P209
[9]  
Kovalevskaya S., 1888, ACTA MATH, V12, P177
[10]   Kowalevski top and genus-2 curves [J].
Markushevich, D .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (11) :2125-2135