Nonlinear filter design using Fokker-Planck-Kolmogorov probability density evolutions

被引:68
作者
Challa, S [1 ]
Bar-Shalom, Y
机构
[1] Univ Melbourne, Corp Res Ctr Sensor Signal & Informat Prod, Dept Elect & Elect Engn, Parkville, Vic 3052, Australia
[2] Univ Connecticut, Dept Elect & Syst Engn, Informat & Comp Syst Grp, Storrs, CT USA
关键词
D O I
10.1109/7.826335
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The Fokker-Planck-Kolmogorov equation (FPKE) in conjunction with Bayes' conditional density update formula provides optimal estimates for a general continuous-discrete nonlinear filtering problem. It is well known that the analytical solution of FPKE and Bayes' formula are extremely difficult to obtain except in a few special cases. Hence, we address this problem using numerical approaches. The efficient numerical solution of FPKE presented relies on the key issue of adaptively calculating the domain over which the state probability density function (pdf) is to be evaluated, which is done using Chebyshev's inequality. Application to a passive tracking example shows that this approach can provide consistent estimators when measurement nonlinearities and noise levels are high.
引用
收藏
页码:309 / 315
页数:7
相关论文
共 20 条
[1]  
Ames W. F., 1992, NUMERICAL METHODS PA
[2]  
Bar-Shalom Yaakov., 1993, ESTIMATION TRACKING
[3]   NEW EXACT NONLINEAR FILTERS WITH LARGE LIE-ALGEBRAS [J].
BENES, VE .
SYSTEMS & CONTROL LETTERS, 1985, 5 (04) :217-221
[4]   General finite-dimensional risk-sensitive problems and small noise limits [J].
Bensoussan, A ;
Elliott, RJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (02) :210-215
[5]  
BERGMAN LA, 1993, NONLINEAR DYNAMICS S, V9, P23
[6]  
BUCY RS, 1970, P 1 S NONL EST THEOR, P6
[7]  
CHALLA S, 1998, THESIS QUEEN U TECHN
[8]   EXACT FINITE-DIMENSIONAL NONLINEAR FILTERS [J].
DAUM, FE .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1986, 31 (07) :616-622
[9]   APPROXIMATE SOLUTION OF THE FOKKER-PLANCK-KOLMOGOROV EQUATION BY FINITE-ELEMENTS [J].
ELGEBEILY, MA ;
SHABAIK, HEE .
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1994, 10 (10) :763-771
[10]  
Jazwinski A.H., 1970, STOCHASTIC PROCESSES