Ground-Based Temperature and Humidity Profiling Using Spectral Infrared and Microwave Observations. Part II: Actual Retrieval Performance in Clear-Sky and Cloudy Conditions

被引:52
作者
Blumberg, W. G. [1 ]
Turner, D. D. [2 ]
Loehnert, U. [3 ]
Castleberry, S. [4 ]
机构
[1] Univ Oklahoma, Cooperat Inst Mesoscale Meteorol Studies, Norman, OK 73019 USA
[2] NOAA, Natl Severe Storms Lab, Norman, OK 73069 USA
[3] Univ Cologne, Inst Geophys & Meteorol, Cologne, Germany
[4] Univ Oklahoma, Sch Meteorol, Norman, OK 73019 USA
基金
美国国家科学基金会;
关键词
Thermodynamics; Profilers; atmospheric; Remote sensing; Soundings; EMITTED RADIANCE INTERFEROMETER; WATER-VAPOR PROFILES; INFORMATION-CONTENT; RADIOMETER; AERI; CALIBRATION; ATMOSPHERE; SATELLITE; FACILITY; INDEXES;
D O I
10.1175/JAMC-D-15-0005.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Although current upper-air observing systems provide an impressive array of observations, many are deficient in observing the temporal evolution of the boundary layer thermodynamic profile. Ground-based remote sensing instruments such as the multichannel microwave radiometer (MWR) and Atmospheric Emitted Radiance Interferometer (AERI) are able to provide profiles of temperature and water vapor through the boundary layer at 5-min resolution or better. Previous work compared these instruments through optimal-estimation retrievals on simulated clear-sky spectra to evaluate the retrieval accuracy and information content of each instrument. In this study, this method is duplicated using real observations from collocated MWR and AERI instruments from a field campaign in southwestern Germany. When compared with radiosondes, this study confirms the previous results that AERI retrievals are more accurate than MWR retrievals in clear-sky and below-cloud-base profiling. These results demonstrate that the AERI has nearly 2 times as much information as the MWR.
引用
收藏
页码:2305 / 2319
页数:15
相关论文
共 46 条
[1]  
[Anonymous], 2010, WEATH MATT SCI SERV, DOI DOI 10.17226/12888
[2]  
[Anonymous], 2009, OBS WEATH CLIM GROUN
[3]  
ARM Climate Research Facility, 2013, Balloon-borne sounding system (SONDEWNPN). 2016-08-22 to 2018-09-01, ARM mobile facility (OLI) Oliktok point, Alaska
[4]  
AMF3 (M1). Compiled by D. Holdridge, J. Kyrouac and R. Coulter, DOI 10.5439/1021460
[5]   Temperature and Humidity Profiling in the Arctic Using Ground-Based Millimeter-Wave Radiometry and 1DVAR [J].
Cimini, Domenico ;
Westwater, Ed R. ;
Gasiewski, Albin J. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (03) :1381-1388
[6]  
Clough S. A., 1992, J GEOPHYS RES, V97, p15 761, DOI [10.1029/92JD01419, DOI 10.1029/92JD01419]
[7]   Atmospheric radiative transfer modeling: a summary of the AER codes [J].
Clough, SA ;
Shephard, MW ;
Mlawer, E ;
Delamere, JS ;
Iacono, M ;
Cady-Pereira, K ;
Boukabara, S ;
Brown, PD .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2005, 91 (02) :233-244
[8]   Accuracy of boundary layer temperature profiles retrieved with multifrequency multiangle microwave radiometry [J].
Crewell, Susanne ;
Loehnert, Ulrich .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (07) :2195-2201
[9]   Combining ground-based with satellite-based measurements in the atmospheric state retrieval: Assessment of the information content [J].
Ebell, K. ;
Orlandi, E. ;
Huenerbein, A. ;
Loehnert, U. ;
Crewell, S. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (13) :6940-6956
[10]  
Feltz WF, 1998, J APPL METEOROL, V37, P857, DOI 10.1175/1520-0450(1998)037<0857:MAOTAW>2.0.CO