The effects of nonuniform magnetic field strength on density flux and test particle transport in drift wave turbulence

被引:15
作者
Dewhurst, J. M. [1 ]
Hnat, B. [1 ]
Dendy, R. O. [1 ,2 ]
机构
[1] Univ Warwick, Dept Phys, Ctr Fus Space & Astrophys, Coventry CV4 7AL, W Midlands, England
[2] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
基金
英国工程与自然科学研究理事会;
关键词
plasma density; plasma drift waves; plasma fluctuations; plasma magnetohydrodynamics; plasma transport processes; plasma turbulence; vortices; PASSIVE TRACERS; PLASMA EDGE; ZONAL FLOWS; DISPERSION; DIFFUSION;
D O I
10.1063/1.3177382
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The extended Hasegawa-Wakatani equations generate fully nonlinear self-consistent solutions for coupled density n and vorticity del(2)phi, where phi is electrostatic potential, in a plasma with background density inhomogeneity kappa=-partial derivative ln n(0)/partial derivative x and magnetic field strength inhomogeneity C=-partial derivative ln B/partial derivative x. Finite C introduces interchange effects and del B drifts into the framework of drift turbulence through compressibility of the ExB and diamagnetic drifts. This paper addresses the direct computation of the radial ExB density flux Gamma(n)=-n partial derivative phi/partial derivative y, tracer particle transport, the statistical properties of the turbulent fluctuations that drive Gamma(n) and tracer motion, and analytical underpinnings. Systematic trends emerge in the dependence on C of the skewness of the distribution of pointwise Gamma(n) and in the relative phase of density-velocity and density-potential pairings. It is shown how these effects, together with conservation of potential vorticity Pi=del(2)phi-n+(kappa-C)x, account for much of the transport phenomenology. Simple analytical arguments yield a Fickian relation Gamma(n)=(kappa-C)D-x between the radial density flux Gamma(n) and the radial tracer diffusivity D-x, which is shown to explain key trends in the simulations.
引用
收藏
页数:8
相关论文
共 35 条
[21]   HIGH-ORDER SPLITTING METHODS FOR THE INCOMPRESSIBLE NAVIER STOKES EQUATIONS [J].
KARNIADAKIS, GE ;
ISRAELI, M ;
ORSZAG, SA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1991, 97 (02) :414-443
[22]   Transport properties of energetic particles in a turbulent electrostatic field [J].
Manfredi, G ;
Dendy, RO .
PHYSICS OF PLASMAS, 1997, 4 (03) :628-635
[23]   Test-particle transport in strong electrostatic drift turbulence with finite larmor radius effects [J].
Manfredi, G ;
Dendy, RO .
PHYSICAL REVIEW LETTERS, 1996, 76 (23) :4360-4363
[24]   The application of passive tracers for investigating transport in plasma turbulence [J].
Naulin, V ;
Garcia, OE ;
Priego, M ;
Rasmussen, JJ .
PHYSICA SCRIPTA, 2006, T122 :129-134
[25]   Accuracy of spectral and finite difference schemes in 2D advection problems [J].
Naulin, V ;
Nielsen, AH .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (01) :104-126
[26]   Aspects of flow generation and saturation in drift-wave turbulence [J].
Naulin, V .
NEW JOURNAL OF PHYSICS, 2002, 4 :28.1-28.18
[27]   Electromagnetic transport components and sheared flows in drift-Alfven turbulence [J].
Naulin, V .
PHYSICS OF PLASMAS, 2003, 10 (10) :4016-4028
[28]   Dispersion of ideal particles in a two-dimensional model of electrostatic turbulence [J].
Naulin, V ;
Nielsen, AH ;
Rasmussen, JJ .
PHYSICS OF PLASMAS, 1999, 6 (12) :4575-4585
[29]  
Naulin V, 2008, AIP CONF PROC, V1013, P191, DOI 10.1063/1.2939031
[30]   Lyapunov exponents and particle dispersion in drift wave turbulence [J].
Pedersen, TS ;
Michelsen, PK ;
Rasmussen, JJ .
PHYSICS OF PLASMAS, 1996, 3 (08) :2939-2950