The effects of nonuniform magnetic field strength on density flux and test particle transport in drift wave turbulence

被引:15
作者
Dewhurst, J. M. [1 ]
Hnat, B. [1 ]
Dendy, R. O. [1 ,2 ]
机构
[1] Univ Warwick, Dept Phys, Ctr Fus Space & Astrophys, Coventry CV4 7AL, W Midlands, England
[2] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
基金
英国工程与自然科学研究理事会;
关键词
plasma density; plasma drift waves; plasma fluctuations; plasma magnetohydrodynamics; plasma transport processes; plasma turbulence; vortices; PASSIVE TRACERS; PLASMA EDGE; ZONAL FLOWS; DISPERSION; DIFFUSION;
D O I
10.1063/1.3177382
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The extended Hasegawa-Wakatani equations generate fully nonlinear self-consistent solutions for coupled density n and vorticity del(2)phi, where phi is electrostatic potential, in a plasma with background density inhomogeneity kappa=-partial derivative ln n(0)/partial derivative x and magnetic field strength inhomogeneity C=-partial derivative ln B/partial derivative x. Finite C introduces interchange effects and del B drifts into the framework of drift turbulence through compressibility of the ExB and diamagnetic drifts. This paper addresses the direct computation of the radial ExB density flux Gamma(n)=-n partial derivative phi/partial derivative y, tracer particle transport, the statistical properties of the turbulent fluctuations that drive Gamma(n) and tracer motion, and analytical underpinnings. Systematic trends emerge in the dependence on C of the skewness of the distribution of pointwise Gamma(n) and in the relative phase of density-velocity and density-potential pairings. It is shown how these effects, together with conservation of potential vorticity Pi=del(2)phi-n+(kappa-C)x, account for much of the transport phenomenology. Simple analytical arguments yield a Fickian relation Gamma(n)=(kappa-C)D-x between the radial density flux Gamma(n) and the radial tracer diffusivity D-x, which is shown to explain key trends in the simulations.
引用
收藏
页数:8
相关论文
共 35 条
[1]   Gyrokinetic calculations of diffusive and convective transport of α particles with a slowing-down distribution function [J].
Angioni, C. ;
Peeters, A. G. .
PHYSICS OF PLASMAS, 2008, 15 (05)
[2]   Non-Gaussian transport in strong plasma turbulence [J].
Annibaldi, SV ;
Manfredi, G ;
Dendy, RO .
PHYSICS OF PLASMAS, 2002, 9 (03) :791-799
[3]   Evidence for strange kinetics in Hasegawa-Mima turbulent transport [J].
Annibaldi, SV ;
Manfredi, G ;
Dendy, RO ;
Drury, LO .
PLASMA PHYSICS AND CONTROLLED FUSION, 2000, 42 (04) :L13-L22
[4]   Universality of intermittent convective transport in the scrape-off layer of magnetically confined devices [J].
Antar, GY ;
Counsell, G ;
Yu, Y ;
Labombard, B ;
Devynck, P .
PHYSICS OF PLASMAS, 2003, 10 (02) :419-428
[5]  
Arakawa A., 1966, Journal of Computational Physics, V1, P119, DOI [DOI 10.1016/0021-9991(66)90015-5, /10.1016/0021-9991(66)90015-5]
[6]   Particle diffusion in anisotropic turbulence [J].
Basu, R. ;
Naulin, V. ;
Rasmussen, J. Juul .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2003, 8 (3-4) :477-492
[7]   Turbulent flux and the diffusion of passive tracers in electrostatic turbulence [J].
Basu, R ;
Jessen, T ;
Naulin, V ;
Rasmussen, JJ .
PHYSICS OF PLASMAS, 2003, 10 (07) :2696-2703
[8]   Fluctuation-induced flux at the plasma edge in toroidal devices [J].
Carreras, BA ;
Hidalgo, C ;
Sanchez, E ;
Pedrosa, MA ;
Balbin, R ;
GarciaCortes, I ;
vanMilligen, B ;
Newman, DE ;
Lynch, VE .
PHYSICS OF PLASMAS, 1996, 3 (07) :2664-2672
[9]   ABSOLUTE DISSIPATIVE DRIFT-WAVE INSTABILITIES IN TOKAMAKS [J].
CHEN, L ;
CHANCE, MS ;
CHENG, CZ .
NUCLEAR FUSION, 1980, 20 (07) :901-905
[10]   Characterization and interpretation of strongly nonlinear phenomena in fusion, space and astrophysical plasmas [J].
Dendy, R. O. ;
Chapman, S. C. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2006, 48 (12B) :B313-B328