A case study on the effect of smart meter sampling intervals and gap-filling approaches on water distribution network simulations

被引:7
作者
Kirstein, Jonas Kjeld [1 ,2 ]
Hogh, Klavs [2 ]
Rygaard, Martin [1 ]
Borup, Morten [1 ]
机构
[1] Tech Univ Denmark, DTU Environm, Lyngby, Denmark
[2] NIRAS AS, Allerod, Denmark
关键词
gap filling; hydraulic model; sampling interval; smart meter; water distribution network; INFORMATICS; MODEL;
D O I
10.2166/hydro.2020.083
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Water usage data collected from smart meters at the end user can improve the accuracy and applicability of water distribution network models. Collecting and storing large amounts of data across hundreds or more smart meters is costly, which makes it important to consider what constitutes a sufficient sampling interval. This paper explores the effect of varying sampling intervals in smart meter data on model performance in regard to flow, pressure and water age simulations. Furthermore, the effect of using linear interpolation, a demand pattern or a network-inflow-weighted approach to fill gaps when data are sampled coarsely, is investigated. The study was based on real data from 525 smart meters in a district metered area in Denmark. The results show that smart meter data can improve modelling results, and if the sampling intervals are coarser than 2 h, then a weighted gap-filling approach markedly outperforms linear interpolation and models with coarse bi-annual demand data.
引用
收藏
页码:66 / 75
页数:10
相关论文
共 15 条
[1]   A bottom-up approach of stochastic demand allocation in a hydraulic network model: a sensitivity study of model parameters [J].
Blokker, E. J. M. ;
Beverloo, H. ;
Vogelaar, A. J. ;
Vreeburg, J. H. G. ;
van Dijk, J. C. .
JOURNAL OF HYDROINFORMATICS, 2011, 13 (04) :714-728
[2]  
Blokker E. J. M., 2008, Drinking Water and Engineering Science, V1, P27
[3]  
Blokker E.J. M., 2010, Drinking Water Engineering and Science, V3, P43, DOI DOI 10.5194/DWES-3-43-2010
[4]   Intelligent Metering for Urban Water: A Review [J].
Boyle, Thomas ;
Giurco, Damien ;
Mukheibir, Pierre ;
Liu, Ariane ;
Moy, Candice ;
White, Stuart ;
Stewart, Rodney .
WATER, 2013, 5 (03) :1052-1081
[5]   Implications of data sampling resolution on water use simulation, end-use disaggregation, and demand management [J].
Cominola, A. ;
Giuliani, M. ;
Castelletti, A. ;
Rosenberg, D. E. ;
Abdallah, A. M. .
ENVIRONMENTAL MODELLING & SOFTWARE, 2018, 102 :199-212
[6]   On the choice of the demand and hydraulic modeling approach to WDN real-time simulation [J].
Creaco, Enrico ;
Pezzinga, Giuseppe ;
Savic, Dragan .
WATER RESOURCES RESEARCH, 2017, 53 (07) :6159-6177
[7]  
Diehl Stiftung & Co. KG, 2019, HYDRU
[8]   Smart meter enabled informatics for economically efficient diversified water supply infrastructure planning [J].
Gurung, Thulo Ram ;
Stewart, Rodney A. ;
Beal, Cara D. ;
Sharma, Ashok K. .
JOURNAL OF CLEANER PRODUCTION, 2016, 135 :1023-1033
[9]   Smart meters for enhanced water supply network modelling and infrastructure planning [J].
Gurung, Thulo Ram ;
Stewart, Rodney A. ;
Sharma, Ashok K. ;
Beal, Cara D. .
RESOURCES CONSERVATION AND RECYCLING, 2014, 90 :34-50
[10]   A semi-automated approach to validation and error diagnostics of water network data [J].
Kirstein, Jonas Kjeld ;
Hogh, Klavs ;
Rygaard, Martin ;
Borup, Morten .
URBAN WATER JOURNAL, 2019, 16 (01) :1-10