Interaction of an ultrashort laser pulse and relativistic electron beam in a corrugated plasma channel

被引:18
作者
Palastro, J. P. [1 ]
Antonsen, T. M. [2 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
[2] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 01期
基金
美国国家科学基金会;
关键词
ACCELERATION; IGNITION;
D O I
10.1103/PhysRevE.80.016409
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Copropagation of a laser pulse and a relativistic electron beam in a corrugated plasma channel has been proposed for the direct laser acceleration of electrons [Palastro et al., Phys. Rev. E 77, 036405 (2008)]. The corrugated plasma channel allows for the guiding of laser pulses composed of subluminal spatial harmonics. Phase matching between the electron beam and the spatial harmonics results in acceleration, but for high beam densities, the pulse energy can be rapidly depleted. This depletion may result in interaction times shorter than the waveguide length limited time or pulse length dephasing time. We present an analytic model and self-consistent simulations of the electron beam-laser pulse interaction. A linear dispersion relation is derived. The effect of the electron beam on the pulse after the occurrence of axial bunching is examined. Injection of axially modulated electron beams is also explored. In particular, we find that a properly phased electron beam can transfer energy to the laser pulse as an inverse process to acceleration.
引用
收藏
页数:15
相关论文
共 23 条
[11]   GeV electron beams from a centimetre-scale accelerator [J].
Leemans, W. P. ;
Nagler, B. ;
Gonsalves, A. J. ;
Toth, Cs. ;
Nakamura, K. ;
Geddes, C. G. R. ;
Esarey, E. ;
Schroeder, C. B. ;
Hooker, S. M. .
NATURE PHYSICS, 2006, 2 (10) :696-699
[12]   The physics basis for ignition using indirect-drive targets on the National Ignition Facility [J].
Lindl, JD ;
Amendt, P ;
Berger, RL ;
Glendinning, SG ;
Glenzer, SH ;
Haan, SW ;
Kauffman, RL ;
Landen, OL ;
Suter, LJ .
PHYSICS OF PLASMAS, 2004, 11 (02) :339-491
[13]   Pulse propagation and electron acceleration in a corrugated plasma channel [J].
Palastro, J. P. ;
Antonsen, T. M. ;
Morshed, S. ;
York, A. G. ;
Milchberg, H. M. .
PHYSICAL REVIEW E, 2008, 77 (03)
[14]  
Pierce J.R., 1950, TRAVELING WAVE TUBES
[15]   Visible-laser acceleration of relativistic electrons in a semi-infinite vacuum [J].
Plettner, T ;
Byer, RL ;
Colby, E ;
Cowan, B ;
Sears, CMS ;
Spencer, JE ;
Siemann, RH .
PHYSICAL REVIEW LETTERS, 2005, 95 (13)
[16]  
Ruth R. D., 1985, Particle Accelerators, V17, P171
[17]   Optical guiding of a radially polarized laser beam for inverse Cherenkov acceleration in a plasma channel [J].
Serafim, P ;
Sprangle, P ;
Hafizi, B .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2000, 28 (04) :1190-1193
[18]   Laser generation of proton beams for the production of short-lived positron emitting radioisotopes [J].
Spencer, I ;
Ledingham, KWD ;
Singhal, RP ;
McCanny, T ;
McKenna, P ;
Clark, EL ;
Krushelnick, K ;
Zepf, M ;
Beg, FN ;
Tatarakis, M ;
Dangor, AE ;
Norreys, PA ;
Clarke, RJ ;
Allott, RM ;
Ross, IN .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2001, 183 (3-4) :449-458
[19]   Laser driven electron acceleration in vacuum, gases, and plasmas [J].
Sprangle, P ;
Esarey, E ;
Krall, J .
PHYSICS OF PLASMAS, 1996, 3 (05) :2183-2190
[20]   STABILITY OF THE DRIVING BUNCH IN THE PLASMA WAKEFIELD ACCELERATOR [J].
SU, JJ ;
KATSOULEAS, T ;
DAWSON, JM ;
CHEN, P ;
JONES, M ;
KEINIGS, R .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 1987, 15 (02) :192-198