Constructing low-cost Ni3C/twin-crystal Zn0.5Cd0.5S heterojunction/homojunction nanohybrids for efficient photocatalytic H2 evolution

被引:315
|
作者
Shen, Rongchen [1 ]
Ding, Yingna [2 ]
Li, Shibang [2 ]
Zhang, Peng [3 ]
Xiang, Quanjun [4 ]
Ng, Yun Hau [5 ]
Li, Xin [1 ,2 ]
机构
[1] South China Agr Univ, Coll Forestry & Landscape Architecture, Key Lab Energy Plants Resource & Utilizat, Minist Agr, Guangzhou 510642, Guangdong, Peoples R China
[2] South China Agr Univ, Coll Mat & Energy, Guangzhou 510642, Guangdong, Peoples R China
[3] Zhengzhou Univ, State Ctr Int Cooperat Designer Low Carbon & Envi, Sch Mat Sci & Engn, Zhengzhou 450001, Henan, Peoples R China
[4] Univ Elect Sci & Technol China, State Key Lab Elect Thin Film & Integrated Device, Chengdu 610054, Sichuan, Peoples R China
[5] City Univ Hong Kong, Sch Energy & Environm, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Photocatalytic H-2 evolution; Zn0.5Cd0.5S solid solution; Twin nanocrystal; Heterojunction/homojunction; Earth-abundant Ni3C cocatalysts; METAL-FREE PHOTOCATALYST; FREE NIS COCATALYST; IN-SITU SYNTHESIS; HYDROGEN EVOLUTION; G-C3N4; NANOSHEETS; SOLID-SOLUTION; H-2-EVOLUTION PERFORMANCE; CDS NANOSHEETS; GENERATION; WATER;
D O I
10.1016/S1872-2067(20)63600-2
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The development of low-cost semiconductor photocatalysts for highly efficient and durable photocatalytic H-2 evolution under visible light is very challenging. In this study, we combine low-cost metallic Ni3C cocatalysts with twin nanocrystal Zn0.5Cd0.5S (ZCS) solid solution homojunctions for an efficient visible-light-driven H-2 production by a simple approach. As-synthesized Zn0.5Cd0.5S-1% Ni3C (ZCS-1) heterojunction/homojunction nanohybrid exhibited the highest photocatalytic H-2-evolution rate of 783 mu mol h(-1) under visible light, which is 2.88 times higher than that of pristine twin nanocrystal ZCS solid solution. The apparent quantum efficiencies of ZCS and ZCS-1 are measured to be 6.13% and 19.25% at 420 nm, respectively. Specifically, the homojunctions between the zinc blende and wurtzite segments in twin nanocrystal ZCS solid solution can significantly improve the light absorption and separation of photogenerated electron-hole pairs. Furthermore, the heterojunction between ZCS and metallic Ni3C NP cocatalysts can efficiently trap excited electrons from ZCS solid solution and enhance the H-2-evolution kinetics at the surface for improving catalytic activity. This study demonstrates a unique one-step strategy for constructing heterojunction/homojunction hybrid nanostructures for a more efficient photocatalytic H-2 evolution compared to other noble metal photocatalytic systems. (C) 2021, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:25 / 36
页数:12
相关论文
共 50 条
  • [21] Preparation of Ni12P5-decorated Cd0.5Zn0.5S for efficient photocatalytic H2 evolution
    Sun, Hongli
    Xue, Wenhua
    Fan, Jun
    Liu, Enzhou
    Yu, Qiushuo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 854
  • [22] High-performance photocatalytic hydrogen evolution in a Zn0.5Cd0.5S/ 0.5 Cd 0.5 S/ MoS2 2 p-n - n heterojunction
    Hu, Guojing
    Guo, Tuo
    Wang, Chengwei
    Liu, Jiaxin
    Liu, Yongzhuo
    Guo, Qingjie
    VACUUM, 2024, 227
  • [23] Noble metal-free ternary MoS2/Zn0.5Cd0.5S/g-C3N4 heterojunction composite for highly efficient photocatalytic H2 production
    Tang, Yunxiang
    Li, Xuesong
    Zhang, Dafeng
    Pu, Xipeng
    Ge, Bo
    Huang, Yanlin
    MATERIALS RESEARCH BULLETIN, 2019, 110 : 214 - 222
  • [24] Bi-doped twin crystal Zn0.5Cd0.5S photocatalyst for highly efficient photocatalytic hydrogen production from water
    Yang, Guangwu
    Chen, Ting
    Liu, Hao
    Xing, Chuanwang
    Yu, Guiyang
    Li, Xiyou
    APPLIED SURFACE SCIENCE, 2023, 616
  • [25] CoPtx-loaded Zn0.5Cd0.5S nanocomposites for enhanced visible light photocatalytic H2 production
    Wang, Hanbin
    Li, Yang
    Shu, Dan
    Chen, Xu
    Liu, Xiang
    Wang, Xina
    Zhang, Jun
    Wang, Hao
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2016, 40 (09) : 1280 - 1286
  • [26] Construction of CoS2/Zn0.5Cd0.5S S-Scheme Heterojunction for Enhancing H2 Evolution Activity Under Visible Light
    Ma, Lijun
    Xu, Jing
    Zhao, Sheng
    Li, Lingjiao
    Liu, Ye
    CHEMISTRY-A EUROPEAN JOURNAL, 2021, 27 (63) : 15795 - 15805
  • [27] Sub-2 nm Pt-decorated Zn0.5Cd0.5S nanocrystals with twin-induced homojunctions for efficient visible-light-driven photocatalytic H2 evolution
    Ng, Boon-Junn
    Putri, Lutfi Kurnianditia
    Kong, Xin Ying
    Shak, Katrina Pui Yee
    Pasbakhsh, Pooria
    Chai, Siang-Piao
    Mohamed, Abdul Rahman
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 224 : 360 - 367
  • [28] Cu-MOF modified Cd0.5Zn0.5S nanoparticles to form S-scheme heterojunction for efficient photocatalytic H2 evolution
    Zhu, Ping
    Feng, Chujun
    Liang, Qian
    Zhou, Man
    Li, Zhongyu
    Xu, Song
    CERAMICS INTERNATIONAL, 2023, 49 (12) : 20706 - 20714
  • [29] Growth of Zn0.5Cd0.5S/-Ni(OH)2 heterojunction by a facile hydrothermal transformation efficiently boosting photocatalytic hydrogen production
    Zhang, Lijun
    Wang, Guorong
    Jin, Zhiliang
    NEW JOURNAL OF CHEMISTRY, 2019, 43 (16) : 6411 - 6421
  • [30] Ultra-thin nanosheet assembled 3D honeycomb-like Zn0.5Cd0.5S for boosting photocatalytic H2 evolution
    Fan, Wenjuan
    Chang, Hui
    Pang, Wenju
    Li, Yufeng
    Xiao, Chuanhai
    Jiang, Yan
    Jiang, Zhiqiang
    Yin, Guangfu
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 309