Ultrafast Electrical Measurements of Isolated Silicon Nanowires and Nanocrystals

被引:19
作者
Bergren, Matthew R. [1 ,2 ]
Kendrick, Chito E. [1 ,3 ]
Neale, Nathan R. [2 ]
Redwing, Joan M. [3 ]
Collins, Reuben T. [1 ]
Furtak, Thomas E. [1 ]
Beard, Matthew C. [1 ,2 ]
机构
[1] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA
[2] Natl Renewable Energy Lab, Chem & Mat Sci Ctr, Golden, CO 80401 USA
[3] Penn State Univ, Mat Sci & Engn Dept, State Coll, PA 16801 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2014年 / 5卷 / 12期
基金
美国国家科学基金会;
关键词
TIME-DOMAIN SPECTROSCOPY; CARRIER DYNAMICS; EXCITON POLARIZABILITY; SURFACE RECOMBINATION; QUANTUM CONFINEMENT; GOLD; CONDUCTIVITY; METAL;
D O I
10.1021/jz500863a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We simultaneously determined the charge carrier mobility and picosecond to nanosecond carrier dynamics of isolated silicon nanowires (Si NWs) and nanocrystals (Si NCs) using time-resolved terahertz spectroscopy. We then compared these results to data measured on bulk c-Si as a function of excitation fluence. We find >1 ns carrier lifetimes in Si NA/Vs that are dominated by surface recombination with surface recombination velocities (SRV) between similar to 1100-1700 cm s(-1) depending on process conditions. The Si NCs have markedly different decay dynamics. Initially, free-carriers are produced, but relax within similar to 1.5 ps to form bound excitons. Subsequently, the excitons decay with lifetimes >7 ns, similar to free carriers produced in bulk Si. The isolated Si NWs exhibit bulk-like mobilities that decrease with increasing excitation density, while the hot-carrier mobilities in the Si NCs are lower than bulk mobilities and could only be measured within the initial 1.5 ps decay. We discuss the implications of our measurements on the utilization of Si NWs and NCs in macroscopic optoelectronic applications.
引用
收藏
页码:2050 / 2057
页数:8
相关论文
共 45 条
[1]   High-resolution detection of Au catalyst atoms in Si nanowires [J].
Allen, Jonathan E. ;
Hemesath, Eric R. ;
Perea, Daniel E. ;
Lensch-Falk, Jessica L. ;
Li, Z. Y. ;
Yin, Feng ;
Gass, Mhairi H. ;
Wang, Peng ;
Bleloch, Andrew L. ;
Palmer, Richard E. ;
Lauhon, Lincoln J. .
NATURE NANOTECHNOLOGY, 2008, 3 (03) :168-173
[2]   Photoluminescence quantum yields of amorphous and crystalline silicon nanoparticles [J].
Anthony, Rebecca ;
Kortshagen, Uwe .
PHYSICAL REVIEW B, 2009, 80 (11)
[3]   Direct Quantification of Gold along a Single Si Nanowire [J].
Bailly, A. ;
Renault, O. ;
Barrett, N. ;
Zagonel, L. F. ;
Gentile, P. ;
Pauc, N. ;
Dhalluin, F. ;
Baron, T. ;
Chabli, A. ;
Cezar, J. C. ;
Brookes, N. B. .
NANO LETTERS, 2008, 8 (11) :3709-3714
[4]   Multiple exciton generation in colloidal silicon nanocrystals [J].
Beard, Matthew C. ;
Knutsen, Kelly P. ;
Yu, Pingrong ;
Luther, Joseph M. ;
Song, Qing ;
Metzger, Wyatt K. ;
Ellingson, Randy J. ;
Nozik, Arthur J. .
NANO LETTERS, 2007, 7 (08) :2506-2512
[5]   Photogenerated Free Carrier Dynamics in Metal and Semiconductor Single-Walled Carbon Nanotube Films [J].
Beard, Matthew C. ;
Blackburn, Jeffrey L. ;
Heben, Michael J. .
NANO LETTERS, 2008, 8 (12) :4238-4242
[6]   Using the finite-difference time-domain pulse propagation method to simulate time-resolved THz experiments [J].
Beard, MC ;
Schmuttenmaer, CA .
JOURNAL OF CHEMICAL PHYSICS, 2001, 114 (07) :2903-2909
[7]   Electron transfer in hydrogenated nanocrystalline silicon observed by time-resolved terahertz spectroscopy [J].
Bergren, Matthew R. ;
Simonds, Brian J. ;
Yan, Baojie ;
Yue, Guozhen ;
Ahrenkiel, Richard ;
Furtak, Thomas E. ;
Collins, Reuben T. ;
Taylor, P. Craig ;
Beard, Matthew C. .
PHYSICAL REVIEW B, 2013, 87 (08)
[8]   CARRIER MOBILITIES IN SILICON EMPIRICALLY RELATED TO DOPING AND FIELD [J].
CAUGHEY, DM ;
THOMAS, RE .
PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1967, 55 (12) :2192-+
[9]   Bulklike Hot Carrier Dynamics in Lead Sulfide Quantum Dots [J].
Cho, Byungmoon ;
Peters, William K. ;
Hill, Robert J. ;
Courtney, Trevor L. ;
Jonas, David M. .
NANO LETTERS, 2010, 10 (07) :2498-2505
[10]   Ultrabroadband terahertz conductivity of Si nanocrystal films [J].
Cooke, D. G. ;
Meldrum, A. ;
Jepsen, P. Uhd .
APPLIED PHYSICS LETTERS, 2012, 101 (21)