Strain-induced martensite to austenite reverse transformation in an ultrafine-grained Fe-Ni-Mn martensitic steel

被引:17
作者
Ghasemi-Nanesa, H. [1 ,2 ,3 ]
Nili-Ahmadabadi, M. [1 ,2 ]
Koohdar, H. R. [1 ]
Habibi-Parsa, M. [1 ,2 ]
Nedjad, S. Hossein [4 ]
Alidokht, S. A. [5 ]
Langdon, Terence G. [6 ,7 ,8 ]
机构
[1] Univ Tehran, Sch Met & Mat Engn, Tehran, Iran
[2] Univ Tehran, Sch Met & Mat Engn, Ctr Excellence High Performance Mat, Tehran, Iran
[3] Ecole Technol Super, Dept Engn Mech, Montreal, PQ H3C 1K3, Canada
[4] Sahand Univ Technol, Fac Mat Engn, Tabriz, Iran
[5] Tarbiat Modares Univ, Dept Mat Engn, Tehran, Iran
[6] Univ So Calif, Dept Aeronaut & Mech Engn, Los Angeles, CA 90089 USA
[7] Univ So Calif, Dept Mat Sci, Los Angeles, CA 90089 USA
[8] Univ Southampton, Mat Res Grp, Fac Engn & Environm, Southampton SO17 1BJ, Hants, England
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
transmission electron microscopy; sheet metal forming; thermodynamics; ultrafine-grained metals; martensitic transformations; SEVERE PLASTIC-DEFORMATION; ALLOY; BEHAVIOR; PRECIPITATION; TEMPERATURE; STRESS; NICKEL; MODEL;
D O I
10.1080/14786435.2014.886785
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Research was conducted to evaluate the effect of heavy cold rolling on microstructural evolution in an Fe-10Ni-7Mn (wt.%) martensitic steel. The chemical driving force for the strain-induced martensite to austenite reverse transformation was calculated using thermodynamic principles and a model was developed for estimating the effect of applied stress on the driving force of the martensite to austenite reverse transformation through heavy cold rolling. These calculations show that, in order to make a reverse transformation feasible, the applied stress on the material should supply the total driving force, both chemical and non-chemical, for the transformation. It is demonstrated that after 60% cold rolling the required driving force for the reverse transformation may be provided. Experimental results, including cold rolling and transmission electron microscopy images, are utilized to verify the thermodynamic calculations.
引用
收藏
页码:1493 / 1507
页数:15
相关论文
共 45 条
[1]  
Altan T., 1983, METAL FORMING FUNDAM
[2]  
[Anonymous], PHYS PRINCIPLES PLAS
[3]  
Decker R.F., 1988, Maraging Steels: Recent Developments and Applications, P1
[4]  
Dieter George Ellwood, 1976, Mechanical metallurgy, V3
[5]   A thermodynamic model for the stacking-fault energy [J].
Ferreira, PJ ;
Mullner, P .
ACTA MATERIALIA, 1998, 46 (13) :4479-4484
[6]  
Floreen S., 1988, Maraging Steels: Recent Developments and Applications, the Minerals, P39
[7]   X-ray diffraction peak profile analysis aiming at better understanding of the deformation process and deformed structure of a martensitic steel [J].
Garabagh, M. R. Movaghar ;
Nedjad, S. Hossein ;
Shirazi, H. ;
Mobarekeh, M. Iranpour ;
Ahmadabadi, M. Nill .
THIN SOLID FILMS, 2008, 516 (22) :8117-8124
[8]   Ductility enhancement in ultrafine-grained Fe-Ni-Mn martensitic steel by stress-induced reverse transformation [J].
Ghasemi-Nanesa, H. ;
Nili-Ahmadabadi, M. ;
Shirazi, H. ;
Nedjad, S. Hossein ;
Pishbin, S. H. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (29-30) :7552-7556
[9]  
Ghasemi-Nanesa H., MET MAT INT IN PRESS, V20
[10]   Control of austenite to martensite transformation through equal channel angular pressing aided by thermodynamic calculations [J].
Hajiakbari, F. ;
Nili-Ahmadabadi, M. ;
Poorganji, B. ;
Furuhara, T. .
ACTA MATERIALIA, 2010, 58 (08) :3073-3078