Skew spectra of oriented bipartite graphs

被引:0
作者
Anuradha, A. [1 ]
Balakrishnan, R. [1 ]
Chen, Xiaolin [2 ,3 ]
Li, Xueliang [2 ,3 ]
Lian, Huishu [2 ,3 ]
So, Wasin [4 ]
机构
[1] Bharathidasan Univ, Dept Math, Tiruchirappalli 620024, India
[2] Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC TJKLC, Tianjin 300071, Peoples R China
[4] San Jose State Univ, Dept Math, San Jose, CA 95192 USA
关键词
oriented bipartite graphs; skew energy; skew spectrum; canonical orientation; parity-linked orientation; switching-equivalence;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph G is said to have a parity-linked orientation phi if every even cycle C-2k in G(phi) is evenly (resp.oddly) oriented whenever k is even (resp.odd).In this paper, this concept is used to provide an affirmative answer to the following conjecture of D.Cui and Y. Hou [D. Cui, Y. Hou, On the skew spectra of Cartesian products of graphs, The Electronic J. Combin. 20(2):#P19, 2013]: Let G = G(X, Y)be a bipartite graph. Call the X -> Y orientation of G, the canonical orientation. Let phi be any orientation of G and let Sp(S)(G(phi)) and Sp(G) denote respectively the skew spectrum of G(phi) and the spectrum of G. Then Sp(S)(G(phi)) = iSp(G) if and only if phi is switching-equivalent to the canonical orientation of G. Using this result, we determine the switch for a special family of oriented hypercubes Q(d)(phi), d >= 1. Moreover, we give an orientation of the Cartesian product of a bipartite graph and a graph, and then determine the skew spectrum of the resulting oriented product graph, which generalizes a result of Cui and Hou. Further this can be used to construct new families of oriented graphs with maximum skew energy.
引用
收藏
页数:12
相关论文
共 14 条
[1]   The skew energy of a digraph [J].
Adiga, C. ;
Balakrishnan, R. ;
So, Wasin .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (07) :1825-1835
[2]  
[Anonymous], 2012, TXB GRAPH THEORY
[3]  
[Anonymous], 2009, Analysis of Complex Networks: From Biology to Linguistics, DOI DOI 10.1002/9783527627981.CH7
[4]  
Anuradha A., 2013, Combinatorial Matrix Theory and Generalized Inverses of Matrices, P1
[5]   Skew-adjacency matrices of graphs [J].
Cavers, M. ;
Cioaba, S. M. ;
Fallat, S. ;
Gregory, D. A. ;
Haemers, W. H. ;
Kirkland, S. J. ;
McDonald, J. J. ;
Tsatsomeros, M. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (12) :4512-4529
[6]   4-Regular oriented graphs with optimum skew energy [J].
Chen, Xiaolin ;
Li, Xueliang ;
Lian, Huishu .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (10) :2948-2960
[7]  
Cui DL, 2013, ELECTRON J COMB, V20
[8]   3-Regular digraphs with optimum skew energy [J].
Gong, Shi-Cai ;
Xu, Guang-Hui .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (03) :465-471
[9]  
Gutman I., 1978, Ber. Math. Statist. Sekt. Forschungsz Graz., V103, DOI [DOI 10.1016/J.LAA.2004.02.038, DOI 10.1088/1742-5468/2008/10/P10008]
[10]  
Hou YP, 2011, ELECTRON J COMB, V18