GENERAL DECAY RATE ESTIMATE FOR THE ENERGY OF A WEAK VISCOELASTIC EQUATION WITH AN INTERNAL TIME-VARYING DELAY TERM

被引:39
作者
Liu, Wenjun [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Coll Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2013年 / 17卷 / 06期
基金
中国国家自然科学基金;
关键词
Weak viscoelastic equation; Time-varying delay; Internal feedback; General decay rate; FEEDBACK STABILIZATION; WAVE-EQUATIONS; HYPERBOLIC-EQUATIONS; EVOLUTION-EQUATIONS; BOUNDARY; STABILITY; SYSTEMS;
D O I
10.11650/tjm.17.2013.2968
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the weak viscoelastic equation with an internal time-varying delay term u(tt)(x, t)-Delta u(x, t)+alpha(t) integral(t)(0) g(t-s)Delta u(x, s) ds+a(0)u(t)(x, t)+a(1)u(t)(x, t-tau(t)) = 0 in a bounded domain. By introducing suitable energy and Lyapunov functionals, under suitable assumptions, we establish a general decay rate estimate for the energy, which depends on the behavior of both alpha and g.
引用
收藏
页码:2101 / 2115
页数:15
相关论文
共 34 条
[1]  
ABDALLAH C, 1993, PROCEEDINGS OF THE 1993 AMERICAN CONTROL CONFERENCE, VOLS 1-3, P3106
[2]   Feedback stabilization of a class of evolution equations with delay [J].
Benhassi, E. M. Ait ;
Ammari, K. ;
Boulite, S. ;
Maniar, L. .
JOURNAL OF EVOLUTION EQUATIONS, 2009, 9 (01) :103-121
[3]   Existence and decay of solutions of a viscoelastic equation with a nonlinear source [J].
Berrimi, S ;
Messaoudi, SA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (10) :2314-2331
[4]  
Berrimi S., 2004, ELECT J DIFFERENTIAL, V88
[5]   Method of Lyapunov functionals construction in stability of delay evolution equations [J].
Caraballo, T. ;
Real, J. ;
Shaikhet, L. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 334 (02) :1130-1145
[6]  
Cavalcanti M.M., 2001, Diff. Integ. Eqs, V14, P85
[7]  
Cavalcanti MM, 2002, ELECTRON J DIFFER EQ
[8]   Frictional versus viscoelastic damping in a semilinear wave equation [J].
Cavalcanti, MM ;
Oquendo, HP .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (04) :1310-1324
[9]   NOT ALL FEEDBACK STABILIZED HYPERBOLIC SYSTEMS ARE ROBUST WITH RESPECT TO SMALL TIME DELAYS IN THEIR FEEDBACKS [J].
DATKO, R .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1988, 26 (03) :697-713
[10]   AN EXAMPLE ON THE EFFECT OF TIME DELAYS IN BOUNDARY FEEDBACK STABILIZATION OF WAVE-EQUATIONS [J].
DATKO, R ;
LAGNESE, J ;
POLIS, MP .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1986, 24 (01) :152-156