The role of size polydispersity in magnetic fluid hyperthermia: average vs. local infra/over-heating effects

被引:30
作者
Munoz-Menendez, Cristina [1 ,2 ]
Conde-Leboran, Ivan [1 ,2 ]
Baldomir, Daniel [1 ,2 ]
Chubykalo-Fesenko, Oksana [3 ]
Serantes, David [1 ,2 ,4 ,5 ]
机构
[1] Univ Santiago de Compostela, Inst Invest Tecnol, Santiago De Compostela 15782, Spain
[2] Univ Santiago de Compostela, Dept Fis Aplicada, Santiago De Compostela 15782, Spain
[3] CSIC, Inst Ciencia Mat Madrid, ES-28049 Madrid, Spain
[4] Univ Colorado, UCCS Biofrontiers Ctr, Colorado Springs, CO 80918 USA
[5] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England
关键词
IRON-OXIDE NANOPARTICLES; DIPOLAR INTERACTIONS; EFFICIENCY; THERAPY; MODEL; FIELD; TIME;
D O I
10.1039/c5cp04539h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An efficient and safe hyperthermia cancer treatment requires the accurate control of the heating performance of magnetic nanoparticles, which is directly related to their size. However, in any particle system the existence of some size polydispersity is experimentally unavoidable, which results in a different local heating output and consequently a different hyperthermia performance depending on the size of each particle. With the aim to shed some light on this significant issue, we have used a Monte Carlo technique to study the role of size polydispersity in heat dissipation at both the local (single particle) and global (macroscopic average) levels. We have systematically varied size polydispersity, temperature and interparticle dipolar interaction conditions, and evaluated local heating as a function of these parameters. Our results provide a simple guide on how to choose, for a given polydispersity degree, the more adequate average particle size so that the local variation in the released heat is kept within some limits that correspond to safety boundaries for the average-system hyperthermia performance. All together we believe that our results may help in the design of more effective magnetic hyperthermia applications.
引用
收藏
页码:27812 / 27820
页数:9
相关论文
共 56 条
  • [1] Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia
    Andrä, W
    d'Ambly, CG
    Hergt, R
    Hilger, I
    Kaiser, WA
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 194 (1-3) : 197 - 203
  • [2] Controlled Cell Death by Magnetic Hyperthermia: Effects of Exposure Time, Field Amplitude, and Nanoparticle Concentration
    Asin, L.
    Ibarra, M. R.
    Tres, A.
    Goya, G. F.
    [J]. PHARMACEUTICAL RESEARCH, 2012, 29 (05) : 1319 - 1327
  • [3] Challenges in the development of magnetic particles for therapeutic applications
    Barry, Stephen E.
    [J]. INTERNATIONAL JOURNAL OF HYPERTHERMIA, 2008, 24 (06) : 451 - 466
  • [4] Effect of magnetic dipolar interactions on nanoparticle heating efficiency: Implications for cancer hyperthermia
    Branquinho, Luis C.
    Carriao, Marcus S.
    Costa, Anderson S.
    Zufelato, Nicholas
    Sousa, Marcelo H.
    Miotto, Ronei
    Ivkov, Robert
    Bakuzis, Andris F.
    [J]. SCIENTIFIC REPORTS, 2013, 3
  • [5] Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization
    Carrey, J.
    Mehdaoui, B.
    Respaud, M.
    [J]. JOURNAL OF APPLIED PHYSICS, 2011, 109 (08)
  • [6] Aggregate formation on polydisperse ferrofluids: A Monte Carlo analysis
    Castro, LL
    da Silva, MF
    Bakuzis, AF
    Miotto, R
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2005, 293 (01) : 553 - 558
  • [7] Design Maps for the Hyperthermic Treatment of Tumors with Superparamagnetic Nanoparticles
    Cervadoro, Antonio
    Giverso, Chiara
    Pande, Rohit
    Sarangi, Subhasis
    Preziosi, Luigi
    Wosik, Jarek
    Brazdeikis, Audrius
    Decuzzi, Paolo
    [J]. PLOS ONE, 2013, 8 (02):
  • [8] Multidimensional energy barrier distributions of interacting magnetic particles evaluated at different magnetization states
    Chubykalo-Fesenko, O
    Chantrell, RW
    [J]. JOURNAL OF APPLIED PHYSICS, 2005, 97 (10)
  • [9] Biological applications of magnetic nanoparticles
    Colombo, Miriam
    Carregal-Romero, Susana
    Casula, Maria F.
    Gutierrez, Lucia
    Morales, Maria P.
    Boehm, Ingrid B.
    Heverhagen, Johannes T.
    Prosperi, Davide
    Parak, Wolfgang. J.
    [J]. CHEMICAL SOCIETY REVIEWS, 2012, 41 (11) : 4306 - 4334
  • [10] A Single Picture Explains Diversity of Hyperthermia Response of Magnetic Nanoparticles
    Conde-Leboran, Ivan
    Baldomir, Daniel
    Martinez-Boubeta, Carlos
    Chubykalo-Fesenko, Oksana
    Morales, Maria del Puerto
    Salas, Gorka
    Cabrera, David
    Camarero, Julio
    Teran, Francisco J.
    Serantes, David
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (27) : 15698 - 15706