Freezing transitions and extreme values: random matrix theory, ζ (1/2+it) and disordered landscapes

被引:114
作者
Fyodorov, Yan V. [1 ]
Keating, Jonathan P. [2 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
[2] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2014年 / 372卷 / 2007期
基金
英国工程与自然科学研究理事会;
关键词
random matrix theory; Riemann zeta function; extreme values; SPIN-GLASSES; MAXIMUM; MOMENTS;
D O I
10.1098/rsta.2012.0503
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We argue that the freezing transition scenario, previously conjectured to occur in the statistical mechanics of 1/f-noise random energy models, governs, after reinterpretation, the value distribution of the maximum of the modulus of the characteristic polynomials p(N)(theta) of large N x N random unitary (circular unitary ensemble) matrices U-N; i.e. the extreme value statistics of p(N)(theta) when N -> infinity. In addition, we argue that it leads to multi-fractal-like behaviour in the total length mu(N)(x) of the intervals in which vertical bar p(N)(theta)vertical bar > N-x, x > 0, in the same limit. We speculate that our results extend to the large values taken by the Riemann zeta function zeta (s) over stretches of the critical line s = 1/2 + it of given constant length and present the results of numerical computations of the large values of zeta (1/2 + it). Our main purpose is to draw attention to the unexpected connections between these different extreme value problems.
引用
收藏
页数:32
相关论文
共 68 条
[1]  
[Anonymous], CRITICAL GAUSSIAN MU
[2]   1/f noise and extreme value statistics -: art. no. 240601 [J].
Antal, T ;
Droz, M ;
Györgyi, G ;
Rácz, Z .
PHYSICAL REVIEW LETTERS, 2001, 87 (24) :240601-240601
[3]  
Arguin L- P, 2012, POISSON DIRICHLET ST
[4]   Random conformal weldings [J].
Astala, Kari ;
Jones, Peter ;
Kupiainen, Antti ;
Saksman, Eero .
ACTA MATHEMATICA, 2011, 207 (02) :203-254
[5]   Random curves by conformal welding [J].
Astala, Kari ;
Jones, Peter ;
Kupiainen, Antti ;
Saksman, Eero .
COMPTES RENDUS MATHEMATIQUE, 2010, 348 (5-6) :257-262
[6]   Log-infinitely divisible multifractal processes [J].
Bacry, E ;
Muzy, JF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 236 (03) :449-475
[7]   Finite-N fluctuation formulas for random matrices [J].
Baker, TH ;
Forrester, PJ .
JOURNAL OF STATISTICAL PHYSICS, 1997, 88 (5-6) :1371-1386
[9]  
Barral J, 2012, CRITICAL MANDELBROT
[10]   Extreme value problems in random matrix theory and other disordered systems [J].
Biroli, Giulio ;
Bouchaud, Jean-Philippe ;
Potters, Marc .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,