Freezing transitions and extreme values: random matrix theory, ζ (1/2+it) and disordered landscapes

被引:110
作者
Fyodorov, Yan V. [1 ]
Keating, Jonathan P. [2 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
[2] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2014年 / 372卷 / 2007期
基金
英国工程与自然科学研究理事会;
关键词
random matrix theory; Riemann zeta function; extreme values; SPIN-GLASSES; MAXIMUM; MOMENTS;
D O I
10.1098/rsta.2012.0503
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We argue that the freezing transition scenario, previously conjectured to occur in the statistical mechanics of 1/f-noise random energy models, governs, after reinterpretation, the value distribution of the maximum of the modulus of the characteristic polynomials p(N)(theta) of large N x N random unitary (circular unitary ensemble) matrices U-N; i.e. the extreme value statistics of p(N)(theta) when N -> infinity. In addition, we argue that it leads to multi-fractal-like behaviour in the total length mu(N)(x) of the intervals in which vertical bar p(N)(theta)vertical bar > N-x, x > 0, in the same limit. We speculate that our results extend to the large values taken by the Riemann zeta function zeta (s) over stretches of the critical line s = 1/2 + it of given constant length and present the results of numerical computations of the large values of zeta (1/2 + it). Our main purpose is to draw attention to the unexpected connections between these different extreme value problems.
引用
收藏
页数:32
相关论文
共 68 条
  • [1] [Anonymous], CRITICAL GAUSSIAN MU
  • [2] 1/f noise and extreme value statistics -: art. no. 240601
    Antal, T
    Droz, M
    Györgyi, G
    Rácz, Z
    [J]. PHYSICAL REVIEW LETTERS, 2001, 87 (24) : 240601 - 240601
  • [3] Arguin L- P, 2012, POISSON DIRICHLET ST
  • [4] Random conformal weldings
    Astala, Kari
    Jones, Peter
    Kupiainen, Antti
    Saksman, Eero
    [J]. ACTA MATHEMATICA, 2011, 207 (02) : 203 - 254
  • [5] Random curves by conformal welding
    Astala, Kari
    Jones, Peter
    Kupiainen, Antti
    Saksman, Eero
    [J]. COMPTES RENDUS MATHEMATIQUE, 2010, 348 (5-6) : 257 - 262
  • [6] Log-infinitely divisible multifractal processes
    Bacry, E
    Muzy, JF
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 236 (03) : 449 - 475
  • [7] Finite-N fluctuation formulas for random matrices
    Baker, TH
    Forrester, PJ
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1997, 88 (5-6) : 1371 - 1386
  • [9] Barral J, 2012, CRITICAL MANDELBROT
  • [10] Extreme value problems in random matrix theory and other disordered systems
    Biroli, Giulio
    Bouchaud, Jean-Philippe
    Potters, Marc
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,