Density-Weighted Fuzzy c-Means Clustering

被引:42
作者
Hathaway, Richard J. [1 ]
Hu, Yingkang [1 ]
机构
[1] Georgia So Univ, Dept Math Sci, Statesboro, GA 30460 USA
关键词
Clustering; data reduction; feature data; fuzzy c-means (FCM); relational data; CONVERGENCE THEORY; COMPLEXITY; REDUCTION;
D O I
10.1109/TFUZZ.2008.2009458
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this short paper, a unified framework for performing density-weighted fuzzy e-means (FCM) clustering of feature and relational datasets is presented. The proposed approach consists of reducing the original dataset to a smaller one, assigning each selected datum a weight reflecting the number of nearby data, clustering the weighted reduced dataset using a weighted version of the feature or relational data FCM algorithm, and if desired, extending the reduced data results hack to the original dataset. Several methods are given for each or the tasks of data subset selection, weight assignment, and extension of the weighted clustering results. The newly proposed weighted version (if the non-Euclidean relational FCM algorithm is proved to produce the identical results as its feature data analog for a certain type of relational data. Artificial and real data examples are used to demonstrate and contrast various instances of this general approach.
引用
收藏
页码:243 / 252
页数:10
相关论文
共 13 条
  • [1] Bezdek J., 1999, FUZZY MODELS ALGORIT
  • [2] Bezdek J.C., 1981, PATTERN RECOGNITION
  • [3] Approximate clustering in very large relational data
    Bezdek, James C.
    Hathaway, Richard J.
    Huband, Jacalyn M.
    Leckie, Christopher
    Kotagiri, Ramamohanarao
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2006, 21 (08) : 817 - 841
  • [4] CONVERGENCE THEORY FOR FUZZY C-MEANS - COUNTEREXAMPLES AND REPAIRS
    BEZDEK, JC
    HATHAWAY, RJ
    SABIN, MJ
    TUCKER, WT
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1987, 17 (05): : 873 - 877
  • [5] Fast accurate fuzzy clustering through data reduction
    Eschrich, S
    Ke, JW
    Hall, LO
    Goldgof, DB
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2003, 11 (02) : 262 - 270
  • [6] A new convergence proof of fuzzy c-means
    Gröll, L
    Jäkel, J
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2005, 13 (05) : 717 - 720
  • [7] Extending fuzzy and probabilistic clustering to very large data sets
    Hathaway, Richard J.
    Bezdek, James C.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (01) : 215 - 234
  • [8] NERF C-MEANS - NON-EUCLIDEAN RELATIONAL FUZZY CLUSTERING
    HATHAWAY, RJ
    BEZDEK, JC
    [J]. PATTERN RECOGNITION, 1994, 27 (03) : 429 - 437
  • [9] RELATIONAL DUALS OF THE C-MEANS CLUSTERING ALGORITHMS
    HATHAWAY, RJ
    DAVENPORT, JW
    BEZDEK, JC
    [J]. PATTERN RECOGNITION, 1989, 22 (02) : 205 - 212
  • [10] A contribution to convergence theory of fuzzy c-means and derivatives
    Höppner, F
    Klawonn, F
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2003, 11 (05) : 682 - 694