Quasiconvexity is not invariant under transposition

被引:12
作者
Müller, S [1 ]
机构
[1] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
关键词
D O I
10.1017/S0308210500000214
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An example is given of a quasiconvex f : M-2x3 --> R such that the transposed function (f) over tilde : M-3x2 --> R given by (f) over tilde(F) = f(F-T) is not quasiconvex. For (f) over tilde one can take Sverak's quartic polynomial that is rank-one convex but not quasiconvex. The proof is closely related to the observation that the map v bar right arrow v(1)v(2)v(3) is weakly continuous from L-3(R-3;R-3) into distributions provided that A(Dv) = (partial derivative(2)v(1), partial derivative(3)v(1), partial derivative(1)v(2), partial derivative(3)v(2), partial derivative(1)v(3), partial derivative(2)v(3)) is compact in W--1,W-3(R-3;R-6).
引用
收藏
页码:389 / 395
页数:7
相关论文
共 12 条
[1]   SEMICONTINUITY PROBLEMS IN THE CALCULUS OF VARIATIONS [J].
ACERBI, E ;
FUSCO, N .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1984, 86 (02) :125-145
[2]  
[Anonymous], NONLINEAR ANAL MECH
[3]  
Dacorogna B., 1989, DIRECT METHODS CALCU
[4]   A-quasiconvexity, lower semicontinuity, and young measures [J].
Fonseca, I ;
Müller, S .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 30 (06) :1355-1390
[5]   TRILINEAR COMPENSATED COMPACTNESS AND NONLINEAR GEOMETRIC OPTICS [J].
JOLY, JL ;
METIVIER, G ;
RAUCH, J .
ANNALS OF MATHEMATICS, 1995, 142 (01) :121-169
[6]  
KRUZIK M, 1997, COMPOSITION QUASICON
[8]  
Morrey B., 1952, Pacific J. Math., V2, P25, DOI [10.2140/pjm.1952.2.25, DOI 10.2140/PJM.1952.2.25, DOI 10.2140/PJM.1952.2.25)]
[9]  
Morrey C.B. Jr., 1966, Multiple Integrals in the Calculus of Variations, V130
[10]  
Murat F., 1981, ANN SC NORM SUP PISA, V8, P68