Hydrothermal synthesis of boron-doped unzipped carbon nanotubes/sulfur composite for high-performance lithium-sulfur batteries

被引:30
|
作者
Xu, Chenxi [1 ,2 ]
Zhou, Haihui [1 ,2 ]
Fu, Chaopeng [1 ,2 ]
Huang, Yanping [1 ,2 ]
Chen, Liang [1 ,2 ]
Yang, Liming [1 ,2 ]
Kuang, Yafei [1 ,2 ]
机构
[1] Hunan Univ, State Key Lab Chemo Biosensing & Chemometr, Changsha 410082, Hunan, Peoples R China
[2] Hunan Univ, Coll Chem & Chem Engn, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
boron-doped; unzipped carbon nanotubes; hydrothermal process; lithium-sulfur batteries; CATHODE; GRAPHENE; PROSPECTS; SPHERES;
D O I
10.1016/j.electacta.2017.02.140
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A boron-doped unzipped carbon nanotubes/sulfur (BUCNTs/S-1) composite was first prepared via a one-pot facile hydrothermal process by using oxidized unzipped carbon nanotubes (O-UCNTs), boron acid and element sulfur as the carbon precursor, B and S sources, respectively. The morphology, structure and composition of the BUCNTs/S-1 composite were characterized and the effect of B doping and sulfur loading were also investigated in details. The results demonstrated that the participation of B atom and sulfur loading achieved by hydrothermal method endowed the BUCNTs host with enhanced conductivity, promoted sulfur dispersibility and strengthened adsorbability for the sulfur species. The electrochemical performances of the BUCNTs/S-1 used as lithium-sulfur cathodes were then studied. Benefitting from all the merits, the BUCNTs/S-1 cathode delivered a high initial capacity of similar to 1251 mAh/g at 0.2C, retaining as high as similar to 750 mAh/g after 400 cycles, displaying significantly enhanced cycling stability. Hence, this work provides a facile method to fabricate a promising sulfur cathode candidate for high performance lithium-sulfur batteries. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:156 / 163
页数:8
相关论文
共 50 条
  • [31] Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium-sulfur batteries
    Cheng, Xin-Bing
    Huang, Jia-Qi
    Zhang, Qiang
    Peng, Hong-Jie
    Zhao, Meng-Qiang
    Wei, Fei
    NANO ENERGY, 2014, 4 : 65 - 72
  • [32] Aminomethyl-Functionalized Carbon Nanotubes as a Host of Small Sulfur Clusters for High-Performance Lithium-Sulfur Batteries
    Li, Fen
    Tao, Jiayou
    Zou, Zhijun
    Li, Chang
    Hou, Zhaohui
    Zhao, Jijun
    CHEMSUSCHEM, 2020, 13 (10) : 2761 - 2768
  • [33] Clarifying the Role of Ordered Mesoporous Carbon on a Separator for High-Performance Lithium-Sulfur Batteries
    Kwon, Yelim
    Choi, Yun Seok
    Wang, Qian
    Song, Lianghao
    Kim, Hansol
    Bulakhe, Ravindra N.
    Kim, Ji Man
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (19) : 9975 - 9984
  • [34] Multifunctional Co9S8 nanotubes for high-performance lithium-sulfur batteries
    Wei, Jian
    Su, Huan
    Qin, Congmin
    Chen, Bing
    Zhang, Hao
    Wang, Jiamin
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 837 : 184 - 190
  • [35] Advances in High-Performance Lithium-Sulfur Batteries
    Liu Shuai
    Yao Lu
    Zhang Qin
    Li Lu-Lu
    Hu Nan-Tao
    Wei Liang-Ming
    Wei Hao
    ACTA PHYSICO-CHIMICA SINICA, 2017, 33 (12) : 2339 - 2358
  • [36] Mesoporous Niobium Nitride Nanowires Encapsulated in Carbon for High-Performance Lithium-Sulfur Batteries
    Jia, Hongpeng
    Wang, Dashuai
    Li, Yanjuan
    Liu, Lihuai
    Gu, Hongfei
    Yang, Shun
    Fu, Qiang
    Yan, Xiao
    Wei, Yingjin
    ACS APPLIED NANO MATERIALS, 2021, 4 (03) : 2606 - 2613
  • [37] Intertwined Nitrogen-Doped Carbon Nanotube Microsphere as Polysulfide Grappler for High-Performance Lithium-Sulfur Batteries
    Xiang, Kaixiong
    Chen, Manfang
    Hu, Jun
    Wang, Sicheng
    Wen, Xiaoyu
    Zhu, Yirong
    Chen, Han
    Shu, Hongbo
    CHEMELECTROCHEM, 2019, 6 (05): : 1466 - 1474
  • [38] Fibrous Hybrid of Graphene and Sulfur Nanocrystals for High-Performance Lithium-Sulfur Batteries
    Zhou, Guangmin
    Yin, Li-Chang
    Wang, Da-Wei
    Li, Lu
    Pei, Songfeng
    Gentle, Ian Ross
    Li, Feng
    Cheng, Hui-Ming
    ACS NANO, 2013, 7 (06) : 5367 - 5375
  • [39] Nitrogen-sulfur dual-doped porous carbon spheres/sulfur composites for high-performance lithium-sulfur batteries
    Zhao, Liping
    Liu, Gang
    Zhang, Peng
    Sun, Liqun
    Cong, Lina
    Wu, Tong
    Zhang, Bohao
    Lu, Wei
    Xie, Haiming
    Wang, Hongyu
    RSC ADVANCES, 2019, 9 (29) : 16571 - 16577
  • [40] Ultrafast Strategy to Fabricate Sulfur Cathodes for High-Performance Lithium-Sulfur Batteries
    Liu, Kun
    Yuan, Huimin
    Wang, Xinyang
    Ye, Peiyuan
    Lu, Binda
    Zhang, Junjie
    Lu, Wang
    Jiang, Feng
    Gu, Shuai
    Chen, Jingjing
    Yan, Chunliu
    Li, Yingzhi
    Xu, Zhenghe
    Lu, Zhouguang
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (26) : 31478 - 31490