First derivative of the period function with applications

被引:35
作者
Freire, E
Gasull, A
Guillamon, A
机构
[1] Univ Seville, Escuela Super Ingn Sevilla, ES-41080 Seville, Spain
[2] Univ Seville, ES Ingn, Seville 41092, Spain
[3] Univ Autonoma Barcelona, Dept Matemat, Edifici Cc, Barcelona 08193, Spain
[4] Univ Politecn Cataluna, Dept Matemat Aplicada 1, Barcelona 08028, Spain
关键词
planar system; center; period function; Lie symmetries;
D O I
10.1016/j.jde.2004.04.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a centre of a planar differential system, we extend the use of the Lie bracket to the determination of the monotonicity character of the period function. As far as we know, there are no general methods to study this function, and the use of commutators and Lie bracket was restricted to prove isochronicity. We give several examples and a special method which simplifies the computations when a first integral is known. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:139 / 162
页数:24
相关论文
共 32 条
[1]   Isochronicity via normal form [J].
Algaba A. ;
Freire E. ;
Gamero E. .
Qualitative Theory of Dynamical Systems, 2000, 1 (2) :133-156
[2]  
[Anonymous], DIFF EQUAT
[3]  
[Anonymous], 1993, ENCY MATH SCI
[4]  
[Anonymous], APPL GROUPS DIFFEREN
[5]  
[Anonymous], 1998, REV MATEMATICHE
[6]   ON THE FAMILIES OF PERIODIC-ORBITS WHICH BIFURCATE FROM THE CIRCULAR SITNIKOV MOTIONS [J].
BELBRUNO, E ;
LLIBRE, J ;
OLLE, M .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1994, 60 (01) :99-129
[7]   On Lie's symmetries for planar polynomial differential systems [J].
Chavarriga, J ;
García, IA ;
Giné, J .
NONLINEARITY, 2001, 14 (04) :863-880
[8]  
Chavarriga J., 1999, QUAL THEORY DYN SYST, V1, P1, DOI DOI 10.1007/BF02969404