Viral model;
diffusion;
delay;
persistence;
global attractivity;
GLOBAL STABILITY;
HBV MODEL;
DIFFUSION;
D O I:
10.3934/cpaa.2020005
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
A delayed reaction-diffusion virus model with a general incidence function and spatially dependent parameters is investigated. The basic reproduction number for the model is derived, and the uniform persistence of solutions and global attractively of the equilibria are proved. We also show the global attractivity of the positive equilibria via constructing Lyapunov functional, in case that all the parameters are spatially independent. Numerical simulations are finally conducted to illustrate these analytical results.
机构:
Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, CanadaHarbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
Li, Michael Y.
Shu, Hongying
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, CanadaHarbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
机构:
Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, CanadaHarbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
Li, Michael Y.
Shu, Hongying
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, CanadaHarbin Inst Technol, Dept Math, Harbin 150001, Peoples R China