Automatic 3D illumination-diagnosis method for large-N arrays: Robust data scanner and machine-learning feature provider

被引:14
作者
Chamarczuk, Michal [1 ]
Malinowski, Michal [1 ]
Nishitsuji, Yohei [2 ,3 ]
Thorbecke, Jan [2 ]
Koivisto, Emilia [4 ]
Heinonen, Suvi [5 ]
Juurela, Sanna [6 ]
Mezyk, Milosz [1 ]
Draganov, Deyan [2 ]
机构
[1] PAS, Inst Geophys, Ksiecia Janusza 64, PL-01452 Warsaw, Poland
[2] Delft Univ Technol, Fac Civil Engn & Geosci, Stevinweg 1,POB 5048, NL-2628 CN Delft, Netherlands
[3] Petro Summit E&P Corp, Chiyoda Ku, 3-2 Otemachi 2 Chome, Tokyo 1008601, Japan
[4] Univ Helsinki, Dept Geosci & Geog, Gustaf Hallstromin Katu 2b, Helsinki, Finland
[5] Geol Survey Finland, POB 96, FIN-02150 Espoo, Finland
[6] Boliden FinnEx Oy, Kevitsantie 730, Petkula 99670, Finland
关键词
SEISMIC NOISE CORRELATIONS; WAVE RECONSTRUCTION; BODY; INTERFEROMETRY; REFLECTIONS; RETRIEVAL; PITON; SVD;
D O I
10.1190/GEO2018-0504.1
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The main issues related to passive-source reflection imaging with seismic interferometry (SI) are inadequate acquisition parameters for sufficient spatial wavefield sampling and vulnerability of surface arrays to the dominant influence of the omnipresent surface-wave sources. Additionally, long recordings provide large data volumes that require robust and efficient processing methods. We address these problems by developing a two-step wavefield evaluation and event detection (TWEED) method of body waves in recorded ambient noise. TWEED evaluates the spatiotemporal characteristics of noise recordings by simultaneous analysis of adjacent receiver lines. We test our method on synthetic data representing transient ambient-noise sources at the surface and in the deeper subsurface. We discriminate between basic types of seismic events by using three adjacent receiver lines. Subsequently, we apply TWEED to 600 h of ambient noise acquired with an approximately 1000-receiver array deployed over an active underground mine in Eastern Finland. We develop the detection of body-wave events related to mine blasts and other routine mining activities using a representative 1 h noise panel. Using TWEED, we successfully detect 1093 body-wave events in the full data set. To increase the computational efficiency, we use slowness parameters derived from the first step of TWEED as input to a support vector machine (SVM) algorithm. Using this approach, we detect 94% of the TWEED-evaluated body-wave events indicating the possibility to limit the illumination analysis to only one step, and therefore increase the time efficiency at the price of lower detection rate. However, TWEED on a small volume of the recorded data followed by SVM on the rest of the data could be efficiently used for a quick and robust (real-time) scanning for body-wave energy in large data volumes for subsequent application of SI for retrieval of reflections.
引用
收藏
页码:Q13 / Q25
页数:13
相关论文
共 55 条
[1]  
ALLEN RV, 1978, B SEISMOL SOC AM, V68, P1521
[2]  
Au I.S.-K., 2015, ENCY EARTHQUAKE ENG, P1, DOI [10.1007/978-3-642-36197-5_378-1, DOI 10.1007/978-3-642-36197-5_378-1]
[3]   Basic data features and results from a spatially dense seismic array on the San Jacinto fault zone [J].
Ben-Zion, Yehuda ;
Vernon, Frank L. ;
Ozakin, Yaman ;
Zigone, Dimitri ;
Ross, Zachary E. ;
Meng, Haoran ;
White, Malcolm ;
Reyes, Juan ;
Hollis, Dan ;
Barklage, Mitchell .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2015, 202 (01) :370-380
[4]   Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements [J].
Bensen, G. D. ;
Ritzwoller, M. H. ;
Barmin, M. P. ;
Levshin, A. L. ;
Lin, F. ;
Moschetti, M. P. ;
Shapiro, N. M. ;
Yang, Y. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2007, 169 (03) :1239-1260
[5]   Conversion and comparability of data presentations on seismic background noise [J].
Bormann, P .
JOURNAL OF SEISMOLOGY, 1998, 2 (01) :37-45
[6]   Toward 4D Noise-Based Seismic Probing of Volcanoes: Perspectives from a Large-N Experiment on Piton de la Fournaise Volcano [J].
Brenguier, F. ;
Kowalski, P. ;
Ackerley, N. ;
Nakata, N. ;
Boue, P. ;
Campillo, M. ;
Larose, E. ;
Rambaud, S. ;
Pequegnat, C. ;
Lecocq, T. ;
Roux, P. ;
Ferrazzini, V. ;
Villeneuve, N. ;
Shapiro, N. M. ;
Chaput, J. .
SEISMOLOGICAL RESEARCH LETTERS, 2016, 87 (01) :15-25
[7]  
Cercone J. A., 1993, 25 SE S SYST THEOR, P388, DOI [10.1109/SSST.1993.522808, DOI 10.1109/SSST.1993.522808]
[8]   3-D land seismic surveys: Definition of geophysical parameters [J].
Chaouch, A. ;
Mari, J. L. .
OIL & GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES, 2006, 61 (05) :611-630
[9]   GENERALIZED RADON TRANSFORMS AND SLANT STACKS [J].
CHAPMAN, CH .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1981, 66 (02) :445-453
[10]   Passive seismic reflection interferometry: A case study from the Aquistore CO2 storage site, Saskatchewan, Canada [J].
Cheraghi, Saeid ;
White, Donald J. ;
Draganov, Deyan ;
Bellefleur, Gilles ;
Craven, James A. ;
Roberts, Brian .
GEOPHYSICS, 2017, 82 (03) :B79-B93