Substrate wettability requirement for the direct transfer of graphene

被引:8
作者
Du, F. [1 ,2 ]
Duan, H. L. [1 ,2 ,3 ,4 ]
Xiong, C. Y. [1 ,2 ,5 ]
Wang, J. X. [1 ,2 ,3 ,4 ]
机构
[1] Peking Univ, Coll Engn, State Key Lab Turbulence & Complex Syst, Beijing 100871, Peoples R China
[2] Peking Univ, Coll Engn, Dept Mech & Engn Sci, Beijing 100871, Peoples R China
[3] Peking Univ, CAPT HEDPS, Beijing 100871, Peoples R China
[4] Peking Univ, IFSA Collaborat Innovat Ctr MoE, Beijing 100871, Peoples R China
[5] Peking Univ, Acad Adv Interdisciplinary Studies, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
SURFACE FREE-ENERGY; HIGH-QUALITY; OXYGEN PLASMA; FILMS; CONTACT; POLYMERS;
D O I
10.1063/1.4932655
中图分类号
O59 [应用物理学];
学科分类号
摘要
The direct transfer method, wherein graphene is transferred from its growth metal to a soft substrate, is widely used to fabricate various devices, and the interfacial bonding condition between the substrate and the graphene is vital for transfer success. In this letter, we present a theoretical model to derive the wettability requirements of the soft substrate to sustain the direct transfer of graphene, and verify the theoretical analysis with experiments. We find that the surface energy components of the substrate have a crucial effect upon the graphene transfer, and that substrates possessing a strong polar surface energy are not suitable for transfer. The theoretical model predicts the critical water contact angle of the soft substrate for graphene transfer to be about 50 degrees, and the experiments measure it to be about 60 degrees. These results provide guidelines for choosing proper substrates to transfer graphene during the fabrication of graphene-based flexible devices. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 31 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[2]   Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment - An SEM investigation [J].
Bodas, Dhananjay ;
Khan-Malek, Chantal .
SENSORS AND ACTUATORS B-CHEMICAL, 2007, 123 (01) :368-373
[3]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[4]   High-quality and efficient transfer of large-area graphene films onto different substrates [J].
Chen, Xu-Dong ;
Liu, Zhi-Bo ;
Zheng, Chao-Yi ;
Xing, Fei ;
Yan, Xiao-Qing ;
Chen, Yongsheng ;
Tian, Jian-Guo .
CARBON, 2013, 56 :271-278
[5]   Surface Tensions of Inorganic Multicomponent Aqueous Electrolyte Solutions and Melts [J].
Dutcher, Cari S. ;
Wexler, Anthony S. ;
Clegg, Simon L. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (46) :12216-12230
[7]   A universal transfer route for graphene [J].
Gorantla, Sandeep ;
Bachmatiuk, Alicja ;
Hwang, Jeonghyun ;
Alsalman, Hussain A. ;
Kwak, Joon Young ;
Seyller, Thomas ;
Eckert, Juergen ;
Spencer, Michael G. ;
Ruemmeli, Mark H. .
NANOSCALE, 2014, 6 (02) :889-896
[8]   Energy band-gap engineering of graphene nanoribbons [J].
Han, Melinda Y. ;
Oezyilmaz, Barbaros ;
Zhang, Yuanbo ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2007, 98 (20)
[9]   Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques [J].
Hillborg, H ;
Ankner, JF ;
Gedde, UW ;
Smith, GD ;
Yasuda, HK ;
Wikström, K .
POLYMER, 2000, 41 (18) :6851-6863
[10]   Inking Elastomeric Stamps with Micro-Patterned, Single Layer Graphene to Create High-Performance OFETs [J].
Kang, Seok Ju ;
Kim, Bumjung ;
Kim, Keun Soo ;
Zhao, Yue ;
Chen, Zheyuan ;
Lee, Gwan Hyoung ;
Hone, James ;
Kim, Philip ;
Nuckolls, Colin .
ADVANCED MATERIALS, 2011, 23 (31) :3531-+