Electrochemical properties of TiO2 nanotube-carbon nanotube composites as anode material of lithium-ion batteries

被引:10
作者
Kang, Kun-Young [1 ]
Shin, Dong Ok [1 ]
Lee, Young-Gi [1 ]
Kim, Sanghyo [2 ]
Kim, Kwang Man [1 ]
机构
[1] ETRI, Res Sect Power Control Devices, Yusong 305700, Daejon, South Korea
[2] Gachon Univ, Dept BioNano Technol, Gyeonggi 461701, South Korea
关键词
TiO2; nanotube; Carbon nanotube; Composite anode material; Electrochemical properties; LI-ION; ANATASE; ELECTRODES; STORAGE; KINETICS; NANOSTRUCTURES; NANOCOMPOSITES; INSERTION; CAPACITY;
D O I
10.1007/s10832-013-9882-0
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
For use as an anode material in lithium batteries, composites consisting of TiO2 nanotubes (TNTs) and carbon nanotubes (CNTs) are prepared by combining hydrothermal reaction of rutile TiO2 bulk particles, blending with different amounts (0-30 wt.%) of CNTs, ball-milling, and subsequent heat treatment at 300 degrees C. Crystalline property analysis and morphology observation of the prepared TNT-CNT powders prove that at low CNT content the composites are consisted of dominant phase of aggregated anatase TNTs. The TNT aggregates are relaxed with increased CNT content to form crosslinked networks surrounding the amorphous CNT phases that act as a dispersing matrix. As a result, the TNT-CNT composite anode with CNT (30 wt.%) is superior for application in lithium-ion batteries because it shows a saturated discharge capacity after about 20th cycle, good high-rate capability, and the lowest interfacial resistance of 1.7-2 Omega cm(-2). The superior anode properties of TNT-CNT composite with high content of CNT are mainly due to CNT's functions to enhance electron transfer and to facilitate Li+ diffusion by dispersing the TNT agglomeration.
引用
收藏
页码:246 / 254
页数:9
相关论文
共 36 条
[1]   TiO2-B nanowires as negative electrodes for rechargeable lithium batteries [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
Bruce, PG .
JOURNAL OF POWER SOURCES, 2005, 146 (1-2) :501-506
[2]   TiO2-B nanowires [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
Bruce, PG .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (17) :2286-2288
[3]  
ARMSTRONG G, 2005, CHEM COMMUN, V2454
[4]   Lithium Storage in Amorphous TiO2 Nanoparticles [J].
Borghols, Wouter J. H. ;
Luetzenkirchen-Hecht, Dirk ;
Haake, Ullrich ;
Chan, Wingkee ;
Lafont, Ugo ;
Kelder, Erik M. ;
van Eck, Ernst R. H. ;
Kentgens, Arno P. M. ;
Mulder, Fokko M. ;
Wagemaker, Marnix .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (05) :A582-A588
[5]   TiO2 nanotubes and CNT-TiO2 hybrid materials for the photocatalytic oxidation of propene at low concentration [J].
Bouazza, N. ;
Ouzzine, M. ;
Lillo-Rodenas, M. A. ;
Eder, D. ;
Linares-Solano, A. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2009, 92 (3-4) :377-383
[6]   TiO2-(B) Nanotubes as Anodes for Lithium Batteries: Origin and Mitigation of Irreversible Capacity [J].
Brutti, Sergio ;
Gentili, Valentina ;
Menard, Herve ;
Scrosati, Bruno ;
Bruce, Peter G. .
ADVANCED ENERGY MATERIALS, 2012, 2 (03) :322-327
[7]   High specific capacity of TiO2-graphene nanocomposite as an anode material for lithium-ion batteries in an enlarged potential window [J].
Cai, Dandan ;
Lian, Peichao ;
Zhu, Xuefeng ;
Liang, Shuzhao ;
Yang, Weishen ;
Wang, Haihui .
ELECTROCHIMICA ACTA, 2012, 74 :65-72
[8]   Facile Synthesis of Mesoporous TiO2-C Nanosphere as an Improved Anode Material for Superior High Rate 1.5 V Rechargeable Li Ion Batteries Containing LiFePO4-C Cathode [J].
Cao, Fei-Fei ;
Wu, Xing-Long ;
Xin, Sen ;
Guo, Yu-Guo ;
Wan, Li-Jun .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (22) :10308-10313
[9]   Anode properties of titanium oxide nanotube and graphite composites for lithium-ion batteries [J].
Choi, Min Gyu ;
Lee, Young-Gi ;
Song, Seung-Wan ;
Kim, Kwang Man .
JOURNAL OF POWER SOURCES, 2010, 195 (24) :8289-8296
[10]   Lithium-ion battery anode properties of TiO2 nanotubes prepared by the hydrothermal synthesis of mixed (anatase and rutile) particles [J].
Choi, Min Gyu ;
Lee, Young-Gi ;
Song, Seung-Wan ;
Kim, Kwang Man .
ELECTROCHIMICA ACTA, 2010, 55 (20) :5975-5983