Monochromatic connecting colorings in strongly connected oriented graphs
被引:8
作者:
Gonzalez-Moreno, Diego
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Metropolitana Cuajimalpa, Dept Matemat Aplicadas & Sistemas, Ciudad De Mexico, Cdmx, MexicoUniv Autonoma Metropolitana Cuajimalpa, Dept Matemat Aplicadas & Sistemas, Ciudad De Mexico, Cdmx, Mexico
Gonzalez-Moreno, Diego
[1
]
Guevara, Mucuy-Kak
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Autonoma Mexico, Fac Ciencias, Mexico City 04510, DF, MexicoUniv Autonoma Metropolitana Cuajimalpa, Dept Matemat Aplicadas & Sistemas, Ciudad De Mexico, Cdmx, Mexico
Guevara, Mucuy-Kak
[2
]
Jose Montellano-Ballesteros, Juan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, MexicoUniv Autonoma Metropolitana Cuajimalpa, Dept Matemat Aplicadas & Sistemas, Ciudad De Mexico, Cdmx, Mexico
Jose Montellano-Ballesteros, Juan
[3
]
机构:
[1] Univ Autonoma Metropolitana Cuajimalpa, Dept Matemat Aplicadas & Sistemas, Ciudad De Mexico, Cdmx, Mexico
[2] Univ Nacl Autonoma Mexico, Fac Ciencias, Mexico City 04510, DF, Mexico
[3] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
An arc-coloring of a strongly connected digraph D is a strongly monochromatic-connecting coloring if for every pair u, v of vertices in D there exist an (u, v)-monochromatic path and a (v, u)-monochromatic path. Let smc(D) denote the maximum number of colors that can be used in a strongly monochromatic-connecting coloring of D. In this paper we prove that if D is a strongly connected oriented graph of size m, then smc(D) = m Omega(D)+ 1, where Omega(D) is the minimum size of a spanning strongly connected subdigraph of D. As a corollary of this result, we see that a strongly connected oriented graph D of order n is hamiltonian if and only if smc(D) = m- n + 1. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:578 / 584
页数:7
相关论文
共 7 条
[1]
Alva-Samos J., 2016, GRAPHS COMB IN PRESS, P1
[2]
Bang-Jensen J, 2000, Digraphs: Theory, Algorithms and Applications