SVFX: a machine learning framework to quantify the pathogenicity of structural variants

被引:21
|
作者
Kumar, Sushant [1 ,2 ]
Harmanci, Arif [3 ]
Vytheeswaran, Jagath [4 ]
Gerstein, Mark B. [1 ,2 ,5 ]
机构
[1] Yale Univ, Program Computat Biol & Bioinformat, New Haven, CT 06520 USA
[2] Yale Univ, Dept Mol Biophys & Biochem, POB 6666, New Haven, CT 06520 USA
[3] Univ Texas Hlth Sci Ctr Houston, Sch Biomed Informat, Ctr Precis Hlth, Houston, TX 77030 USA
[4] CALTECH, Dept Comp & Math Sci, Pasadena, CA 91125 USA
[5] Yale Univ, Dept Comp Sci, 260-266 Whitney Ave,POB 208114, New Haven, CT 06520 USA
基金
美国国家卫生研究院;
关键词
IMPACT; SETD3; MUTATIONS;
D O I
10.1186/s13059-020-02178-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
There is a lack of approaches for identifying pathogenic genomic structural variants (SVs) although they play a crucial role in many diseases. We present a mechanism-agnostic machine learning-based workflow, called SVFX, to assign pathogenicity scores to somatic and germline SVs. In particular, we generate somatic and germline training models, which include genomic, epigenomic, and conservation-based features, for SV call sets in diseased and healthy individuals. We then apply SVFX to SVs in cancer and other diseases; SVFX achieves high accuracy in identifying pathogenic SVs. Predicted pathogenic SVs in cancer cohorts are enriched among known cancer genes and many cancer-related pathways.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Pathogenicity of new BEST1 variants identified in Italian patients with best vitelliform macular dystrophy assessed by computational structural biology
    Frecer, Vladimir
    Iarossi, Giancarlo
    Salvetti, Anna Paola
    Maltese, Paolo Enrico
    Delledonne, Giulia
    Oldani, Marta
    Staurenghi, Giovanni
    Falsini, Benedetto
    Minnella, Angelo Maria
    Ziccardi, Lucia
    Magli, Adriano
    Colombo, Leonardo
    D'Esposito, Fabiana
    Miertus, Jan
    Viola, Francesco
    Attanasio, Marcella
    Maggio, Emilia
    Bertelli, Matteo
    JOURNAL OF TRANSLATIONAL MEDICINE, 2019, 17 (01)
  • [32] Decomposing Structural Response Due to Sequence Changes in Protein Domains with Machine Learning
    Bryant, Patrick
    Elofsson, Arne
    JOURNAL OF MOLECULAR BIOLOGY, 2020, 432 (16) : 4435 - 4446
  • [33] Artificial intelligence and machine learning as business tools: A framework for diagnosing value destruction potential
    Canhoto, Ana Isabel
    Clear, Fintan
    BUSINESS HORIZONS, 2020, 63 (02) : 183 - 193
  • [34] Integrated Systematic Framework for Forecasting China's Consumer Confidence: A Machine Learning Approach
    Lin, Yu-Cheng
    Sung, Bongsuk
    Park, Sang-Do
    SYSTEMS, 2024, 12 (11):
  • [35] A novel framework for feature simplification and selection in flood susceptibility assessment based on machine learning
    Zhu, Kaili
    Lai, Chengguang
    Wang, Zhaoli
    Zeng, Zhaoyang
    Mao, Zhonghao
    Chen, Xiaohong
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2024, 52
  • [36] The Deflector Selector: A machine learning framework for prioritizing hazardous object deflection technology development
    Nesvold, E. R.
    Greenberg, A.
    Erasmus, N.
    van Heerden, E.
    Galache, J. L.
    Dahlstrom, E.
    Marchis, F.
    ACTA ASTRONAUTICA, 2018, 146 : 33 - 45
  • [37] Predicting antibacterial activity, efficacy, and hemotoxicity of peptides using an explainable machine learning framework
    Bhatnagar, Pranshul
    Khandelwal, Yashi
    Mishra, Shagun
    Kumar, G. Sathish
    Dutta, Arnab
    Mitra, Debirupa
    Biswas, Swati
    PROCESS BIOCHEMISTRY, 2024, 145 : 163 - 174
  • [38] The relative importance of ESG pillars: A two-step machine learning and analytical framework
    Mashayekhi, Bita
    Asiaei, Kaveh
    Rezaee, Zabihollah
    Jahangard, Amin
    Samavat, Milad
    Homayoun, Saeid
    SUSTAINABLE DEVELOPMENT, 2024, 32 (05) : 5404 - 5420
  • [39] Machine Learning Integrating Protein Structure, Sequence, and Dynamics to Predict the Enzyme Activity of Bovine Enterokinase Variants
    Elia Venanzi, Niccolo Alberto
    Basciu, Andrea
    Vargiu, Attilio Vittorio
    Kiparissides, Alexandros
    Dalby, Paul A.
    Dikicioglu, Duygu
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (07) : 2681 - 2694
  • [40] Recent Advances in the Prediction of Protein Structural Classes: Feature Descriptors and Machine Learning Algorithms
    Zhu, Lin
    Davari, Mehdi D.
    Li, Wenjin
    CRYSTALS, 2021, 11 (04)