Finite speed of propagation in porous media by mass transportation methods

被引:29
作者
Carrillo, JA [1 ]
Gualdani, MP
Toscani, G
机构
[1] Univ Autonoma Barcelona, ICREA, Dept Math, Bellaterra 08193, Spain
[2] Univ Mainz, Fachbereich Math, D-55099 Mainz, Germany
[3] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
关键词
D O I
10.1016/j.crma.2004.03.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this Note we make use of mass transportation techniques to give a simple proof of the finite speed of propagation of the solution to the one-dimensional porous medium equation. The result follows by showing that the difference of support of any two solutions corresponding to different compactly supported initial data is a bounded in time function of a suitable Monge-Kantorovich related metric. (C) 2004, Academie des sciences. Published by Elsevier SAS. All rights reserved.
引用
收藏
页码:815 / 818
页数:4
相关论文
共 6 条
[1]  
Carrillo JA, 2000, INDIANA U MATH J, V49, P113
[2]   SOME PROBLEMS OF THE QUALITATIVE THEORY OF NON-LINEAR DEGENERATE 2ND-ORDER PARABOLIC EQUATIONS [J].
KALASHNIKOV, AS .
RUSSIAN MATHEMATICAL SURVEYS, 1987, 42 (02) :169-222
[3]  
VAZQUEZ JL, 1992, NATO ADV SCI I C-MAT, V380, P347
[4]   Asymptotic behaviour for the porous medium equation posed in the whole space [J].
Vázquez, JL .
JOURNAL OF EVOLUTION EQUATIONS, 2003, 3 (01) :67-118
[5]  
VAZQUEZ JL, 1983, T AM MATH SOC, V277, P2
[6]  
VILLANI C, 2003, GRAD STUD MATH, V58, P1065