Holomorphic Curves into Projective Varieties Intersecting Closed Subschemes in Subgeneral Position

被引:1
作者
Ji, Qingchun [1 ,2 ]
Yao, Jun [1 ]
Yu, Guangsheng [3 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Fudan Univ, Shanghai Ctr Math Sci, Shanghai 200433, Peoples R China
[3] Ningbo Univ, Sch Math & Stat, Ningbo 315211, Peoples R China
基金
中国国家自然科学基金;
关键词
Nevanlinna theory; Second main theorem; Holomorphic curve; Subgeneral position; Closed subschemes; Schmidt's subspace theorem;
D O I
10.1007/s11401-022-0375-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the authors introduce the index of subgeneral position for closed subschemes and obtain a second main theorems based on this notion. They also give the corresponding Schmidt's subspace type theorem via the analogue between Nevanlinna theory and Diophantine approximation.
引用
收藏
页码:1023 / 1032
页数:10
相关论文
共 10 条
[1]   REGARDING THE NON-DENSITY OF INTEGRAL POINTS [J].
Autissier, Pascal .
DUKE MATHEMATICAL JOURNAL, 2011, 158 (01) :13-27
[2]   Holomorphic curves into algebraic varieties intersecting divisors in subgeneral position [J].
Ji, Qingchun ;
Yan, Qiming ;
Yu, Guangsheng .
MATHEMATISCHE ANNALEN, 2019, 373 (3-4) :1457-1483
[3]  
Matsumura H., 1980, Commutative algebra
[4]   The Ru-Vojta result for subvarieties [J].
Ru, Min ;
Wang, Julie Tzu-Yueh .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2022, 18 (01) :61-74
[5]   A BIRATIONAL NEVANLINNA CONSTANT AND ITS CONSEQUENCES [J].
Ru, Min ;
Vojta, Paul .
AMERICAN JOURNAL OF MATHEMATICS, 2020, 142 (03) :957-991
[6]   A subspace theorem for subvarieties [J].
Ru, Min ;
Wang, Julie Tzu-Yueh .
ALGEBRA & NUMBER THEORY, 2017, 11 (10) :2323-2337
[7]   ARITHMETIC DISTANCE FUNCTIONS AND HEIGHT FUNCTIONS IN DIOPHANTINE GEOMETRY [J].
SILVERMAN, JH .
MATHEMATISCHE ANNALEN, 1987, 279 (02) :193-216
[8]  
Vojta P., 2020, arXiv
[9]  
VOJTA P, 1987, DIOPHANTINE APPROXIM
[10]   Diophantine Approximation and Nevanlinna Theory [J].
Vojta, Paul .
ARITHMETIC GEOMETRY, 2011, 2009 :111-224