Gaussian local unitary equivalence of n-mode Gaussian states and Gaussian transformations by local operations with classical communication

被引:12
|
作者
Giedke, G. [1 ]
Kraus, B. [2 ]
机构
[1] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[2] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
来源
PHYSICAL REVIEW A | 2014年 / 89卷 / 01期
基金
奥地利科学基金会;
关键词
MULTIPARTITE ENTANGLEMENT; CRITERION; INVARIANTS; SYSTEMS;
D O I
10.1103/PhysRevA.89.012335
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We derive necessary and sufficient conditions for arbitrary multimode (pure or mixed) Gaussian states to be equivalent under Gaussian local unitary operations. To do so, we introduce a standard form for Gaussian states, which has the properties that (i) every state can be transformed into its standard form via Gaussian local unitaries and (ii) it is unique and (iii) it can be easily computed. Thus, two states are equivalent under Gaussian local unitaries if and only if their standard forms coincide. We explicitly derive the standard form for two-and three-mode Gaussian pure states. We then investigate transformations between these classes by means of Gaussian local operations assisted by classical communication. For three-mode pure states, we identify a global property that cannot be created but only destroyed by local operations. This implies that the highly entangled family of symmetric three-mode Gaussian states is not sufficient to generate all three-mode Gaussian states by local Gaussian operations.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] On Expanding Neighborhoods of Local Universality of Gaussian Unitary Ensembles
    M. A. Lapik
    D. N. Tulyakov
    Proceedings of the Steklov Institute of Mathematics, 2018, 301 : 170 - 179
  • [12] On Expanding Neighborhoods of Local Universality of Gaussian Unitary Ensembles
    Lapik, M. A.
    Tulyakov, D. N.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2018, 301 (01) : 170 - 179
  • [13] LOCAL ASYMPTOTIC EQUIVALENCE OF PURE STATES ENSEMBLES AND QUANTUM GAUSSIAN WHITE NOISE
    Butucea, Cristina
    Guta, Madalin
    Nussbaum, Michael
    ANNALS OF STATISTICS, 2018, 46 (6B): : 3676 - 3706
  • [14] Minimal set of local measurements and classical communication for two-mode Gaussian state entanglement quantification
    Haruna, Luis F.
    de Oliveira, Marcos C.
    Rigolin, Gustavo
    PHYSICAL REVIEW LETTERS, 2007, 98 (15)
  • [15] Equivalence of quantum states under local unitary transformations
    Fei, SM
    Jing, NH
    PHYSICS LETTERS A, 2005, 342 (1-2) : 77 - 81
  • [16] Mode transformations and entanglement relativity in bipartite Gaussian states
    Ciancio, Emanuele
    Giorda, Paolo
    Zanardi, Paolo
    PHYSICS LETTERS A, 2006, 354 (04) : 274 - 280
  • [17] Geometric characterization of separability and entanglement in pure Gaussian states by single-mode unitary operations
    Adesso, Gerardo
    Giampaolo, Salvatore M.
    Illuminati, Fabrizio
    PHYSICAL REVIEW A, 2007, 76 (04):
  • [18] Graph states and local unitary transformations beyond local Clifford operations
    Tsimakuridze, Nikoloz
    Guehne, Otfried
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (19)
  • [19] Standard forms and entanglement engineering of multimode Gaussian states under local operations
    Serafini, Alessio
    Adesso, Gerardo
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (28) : 8041 - 8053
  • [20] Conditions for the local manipulation of tripartite Gaussian states
    Wang, L
    Li, SS
    Zheng, HZ
    PHYSICAL REVIEW A, 2003, 67 (06):