Integrating LiDAR data and multi-temporal aerial imagery to map wetland inundation dynamics using Google Earth Engine

被引:130
作者
Wu, Qiusheng [1 ]
Lane, Charles R. [2 ]
Li, Xuecao [3 ]
Zhao, Kaiguang [4 ]
Zhou, Yuyu [3 ]
Clinton, Nicholas [5 ]
DeVries, Ben [6 ]
Golden, Heather E. [2 ]
Lang, Megan W. [7 ]
机构
[1] Univ Tennessee, Dept Geog, Knoxville, TN 37996 USA
[2] US EPA, Off Res & Dev, Cincinnati, OH 45268 USA
[3] Iowa State Univ, Dept Geol & Atmospher Sci, Ames, IA 50011 USA
[4] Ohio State Univ, Sch Environm & Nat Resources, Ohio Agr & Res Dev Ctr, Wooster, OH 44691 USA
[5] Google Inc, 1600 Amphitheatre Pkwy, Mountain View, CA 94043 USA
[6] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA
[7] US Fish & Wildlife Serv, Natl Wetlands Inventory, Falls Church, VA 22041 USA
关键词
Wetland hydrology; Inundation; Topographic depressions; Surface water; LiDAR; Google Earth Engine; PRAIRIE POTHOLE REGION; GEOGRAPHICALLY ISOLATED WETLANDS; SURFACE-WATER; ECOSYSTEM SERVICES; CONNECTIVITY; DELINEATION; INDEX; AREA;
D O I
10.1016/j.rse.2019.04.015
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Prairie Pothole Region of North America is characterized by millions of depressional wetlands, which provide critical habitats for globally significant populations of migratory waterfowl and other wildlife species. Due to their relatively small size and shallow depth, these wetlands are highly sensitive to climate variability and anthropogenic changes, exhibiting inter- and intra-annual inundation dynamics. Moderate-resolution satellite imagery (e.g., Landsat, Sentinel) alone cannot be used to effectively delineate these small depressional wetlands. By integrating fine spatial resolution Light Detection and Ranging (LiDAR) data and multi-temporal (2009-2017) aerial images, we developed a fully automated approach to delineate wetland inundation extent at watershed scales using Google Earth Engine. Machine learning algorithms were used to classify aerial imagery with additional spectral indices to extract potential wetland inundation areas, which were further refined using LiDAR-derived landform depressions. The wetland delineation results were then compared to the U.S. Fish and Wildlife Service National Wetlands Inventory (NWI) geospatial dataset and existing global-scale surface water products to evaluate the performance of the proposed method. We tested the workflow on 26 watersheds with a total area of 16,576 km(2) in the Prairie Pothole Region. The results showed that the proposed method can not only delineate current wetland inundation status but also demonstrate wetland hydrological dynamics, such as wetland coalescence through fill-spill hydrological processes. Our automated algorithm provides a practical, reproducible, and scalable framework, which can be easily adapted to delineate wetland inundation dynamics at broad geographic scales.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 56 条
[1]  
[Anonymous], 2015, Connectivity of Streams Wetlands to Downstream Waters: A Review Synthesis of the Scientific Evidence
[2]  
[Anonymous], 1979, CLASSIFICATION WETLA
[3]  
Arthur D, 2007, PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1027
[4]   Landsat-based classification in the cloud: An opportunity for a paradigm shift in land cover monitoring [J].
Azzari, G. ;
Lobell, D. B. .
REMOTE SENSING OF ENVIRONMENT, 2017, 202 :64-74
[5]   Operational Surface Water Detection and Monitoring Using Radarsat 2 [J].
Bolanos, Sandra ;
Stiff, Doug ;
Brisco, Brian ;
Pietroniro, Alain .
REMOTE SENSING, 2016, 8 (04)
[6]   Estimating Wetland Connectivity to Streams in the Prairie Pothole Region: An Isotopic and Remote Sensing Approach [J].
Brooks, J. R. ;
Mushet, D. M. ;
Vanderhoof, M. K. ;
Leibowitz, S. G. ;
Christensen, J. R. ;
Neff, B. P. ;
Rosenberry, D. O. ;
Rugh, W. D. ;
Alexander, L. C. .
WATER RESOURCES RESEARCH, 2018, 54 (02) :955-977
[7]   Biogeochemical hotspots: Role of small water bodies in landscape nutrient processing [J].
Cheng, Frederick Y. ;
Basu, Nandita B. .
WATER RESOURCES RESEARCH, 2017, 53 (06) :5038-5056
[8]   A Global Geospatial Ecosystem Services Estimate of Urban Agriculture [J].
Clinton, Nicholas ;
Stuhlmacher, Michelle ;
Miles, Albie ;
Aragon, Nazli Uludere ;
Wagner, Melissa ;
Georgescu, Matei ;
Herwig, Chris ;
Gong, Peng .
EARTHS FUTURE, 2018, 6 (01) :40-60
[9]   Do geographically isolated wetlands influence landscape functions? [J].
Cohen, Matthew J. ;
Creed, Irena F. ;
Alexander, Laurie ;
Basu, Nandita B. ;
Calhoun, Aram J. K. ;
Craft, Christopher ;
D'Amico, Ellen ;
DeKeyser, Edward ;
Fowler, Laurie ;
Golden, Heather E. ;
Jawitz, James W. ;
Kalla, Peter ;
Kirkman, L. Katherine ;
Lane, Charles R. ;
Lang, Megan ;
Leibowitz, Scott G. ;
Lewis, David Bruce ;
Marton, John ;
McLaughlin, Daniel L. ;
Mushet, David M. ;
Raanan-Kiperwas, Hadas ;
Rains, Mark C. ;
Smith, Lora ;
Walls, Susan C. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (08) :1978-1986
[10]   Enhancing protection for vulnerable waters [J].
Creed, Irena F. ;
Lane, Charles R. ;
Serran, Jacqueline N. ;
Alexander, Laurie C. ;
Basu, Nandita B. ;
Calhoun, Aram J. K. ;
Christensen, Jay R. ;
Cohen, Matthew J. ;
Craft, Christopher ;
D'Amico, Ellen ;
DeKeyser, Edward ;
Fowler, Laurie ;
Golden, Heather E. ;
Jawitz, James W. ;
Kalla, Peter ;
Kirkman, L. Katherine ;
Lang, Megan ;
Leibowitz, Scott G. ;
Lewis, David B. ;
Marton, John ;
McLaughlin, Daniel L. ;
Raanan-Kiperwas, Hadas ;
Rains, Mark C. ;
Rains, Kai C. ;
Smith, Lora .
NATURE GEOSCIENCE, 2017, 10 (11) :809-815