Multistable solitons in the cubic-quintic discrete nonlinear Schrodinger equation

被引:86
|
作者
Carretero-Gonzalez, R. [1 ]
Talley, J. D.
Chong, C.
Malomed, B. A.
机构
[1] San Diego State Univ, Nonlinear Dynam Syst Grp, San Diego, CA 92182 USA
[2] San Diego State Univ, Computat Sci Res Ctr, San Diego, CA 92182 USA
[3] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA
[4] Tel Aviv Univ, Fac Engn, Dept Interdisciplinary Studies, IL-69978 Tel Aviv, Israel
关键词
nonlinear Schrodinger equation; solitons; bifurcations; nonlinear lattices;
D O I
10.1016/j.physd.2006.01.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the existence and stability of localized Solutions in the one-dimensional discrete nonlinear Schrodinger (DNLS) equation with a combination of competing self-focusing cubic and defocusing quintic onsite nonlinearities. We produce a stability diagram for different families of soliton solutions that suggests the (co)existence of infinitely many branches of stable localized solutions. Bifurcations that occur with an increase in the coupling constant are studied in a numerical form. A variational approximation is developed for accurate prediction of the most fundamental and next-order solitons, together with their bifurcations. Salient properties of the model, which distinguish it from the well-known cubic DNLS equation, are the existence of two different types of symmetric solitons and stable asymmetric soliton solutions that are found in narrow regions of the parameter space. The asymmetric solutions appear from and disappear back into the symmetric ones via loops of forward and backward pitchfork bifurcations. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:77 / 89
页数:13
相关论文
共 50 条
  • [31] Nonlocal Cubic-Quintic Nonlinear Schrodinger Equation: Symmetry Breaking Solitons and Its Trajectory Rotation
    Sakthivinayagam, P.
    PHYSICS OF WAVE PHENOMENA, 2022, 30 (06) : 387 - 396
  • [32] Dynamics of cubic-quintic nonlinear Schrodinger equation with different parameters
    Hua, Wei
    Liu, Xue-Shen
    Liu, Shi-Xing
    CHINESE PHYSICS B, 2016, 25 (05)
  • [33] A variational approach in the dissipative cubic-quintic nonlinear Schrodinger equation
    Freitas, DS
    De Oliveira, JR
    MODERN PHYSICS LETTERS B, 2002, 16 (1-2): : 27 - 32
  • [34] Drag force in bimodal cubic-quintic nonlinear Schrodinger equation
    Feijoo, David
    Ordonez, Ismael
    Paredes, Angel
    Michinel, Humberto
    PHYSICAL REVIEW E, 2014, 90 (03):
  • [35] New exact solutions for the cubic-quintic nonlinear Schrodinger equation
    Peng, Yan-Ze
    Krishnan, E. V.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2007, 5 (02) : 243 - 252
  • [36] Periodic and solitary waves of the cubic-quintic nonlinear Schrodinger equation
    Hong, L
    Beech, R
    Osman, F
    He, XT
    Lou, SY
    Hora, H
    JOURNAL OF PLASMA PHYSICS, 2004, 70 : 415 - 429
  • [37] Nontrivial on-site soliton solutions for stationary cubic-quintic discrete nonlinear schrodinger equation
    Qausar, Haves
    Ramli, Marwan
    Munzir, Said
    Syafwan, Mahdhivan
    Susanto, Hadi
    Halfiani, Vera
    Ramli, Marwan (marwan.math@unsyiah.ac.id), 1600, International Association of Engineers (50): : 1 - 5
  • [38] Conservation laws and solitons for the coupled cubic-quintic nonlinear Schrodinger equations in nonlinear optics
    Shan, Wen-Rui
    Qi, Feng-Hua
    Guo, Rui
    Xue, Yu-Shan
    Wang, Pan
    Tian, Bo
    PHYSICA SCRIPTA, 2012, 85 (01)
  • [39] Solitons of (1+1)D cubic-quintic nonlinear Schrodinger equation with PT - symmetric potentials
    Goksel, Izzet
    Antar, Nalan
    Bakirtas, Ilkay
    OPTICS COMMUNICATIONS, 2015, 354 : 277 - 285
  • [40] Nonautonomous solitons, breathers and rogue waves for the cubic-quintic nonlinear Schrodinger equation in an inhomogeneous optical fibre
    Su, Chuan-Qi
    Wang, Yong-Yan
    Qin, Nan
    JOURNAL OF MODERN OPTICS, 2017, 64 (04) : 317 - 328