Multistable solitons in the cubic-quintic discrete nonlinear Schrodinger equation

被引:86
|
作者
Carretero-Gonzalez, R. [1 ]
Talley, J. D.
Chong, C.
Malomed, B. A.
机构
[1] San Diego State Univ, Nonlinear Dynam Syst Grp, San Diego, CA 92182 USA
[2] San Diego State Univ, Computat Sci Res Ctr, San Diego, CA 92182 USA
[3] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA
[4] Tel Aviv Univ, Fac Engn, Dept Interdisciplinary Studies, IL-69978 Tel Aviv, Israel
关键词
nonlinear Schrodinger equation; solitons; bifurcations; nonlinear lattices;
D O I
10.1016/j.physd.2006.01.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the existence and stability of localized Solutions in the one-dimensional discrete nonlinear Schrodinger (DNLS) equation with a combination of competing self-focusing cubic and defocusing quintic onsite nonlinearities. We produce a stability diagram for different families of soliton solutions that suggests the (co)existence of infinitely many branches of stable localized solutions. Bifurcations that occur with an increase in the coupling constant are studied in a numerical form. A variational approximation is developed for accurate prediction of the most fundamental and next-order solitons, together with their bifurcations. Salient properties of the model, which distinguish it from the well-known cubic DNLS equation, are the existence of two different types of symmetric solitons and stable asymmetric soliton solutions that are found in narrow regions of the parameter space. The asymmetric solutions appear from and disappear back into the symmetric ones via loops of forward and backward pitchfork bifurcations. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:77 / 89
页数:13
相关论文
共 50 条
  • [1] Multistable solitons in higher-dimensional cubic-quintic nonlinear Schrodinger lattices
    Chong, C.
    Carretero-Gonzalez, R.
    Malomed, B. A.
    Kevrekidis, P. G.
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (02) : 126 - 136
  • [2] Stability of spinning ring solitons of the cubic-quintic nonlinear Schrodinger equation
    Towers, I
    Buryak, AV
    Sammut, RA
    Malomed, BA
    Crasovan, LC
    Mihalache, D
    PHYSICS LETTERS A, 2001, 288 (5-6) : 292 - 298
  • [3] Pseudorecurrence and chaos of cubic-quintic nonlinear Schrodinger equation
    Zhou, CT
    Lai, CH
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1996, 7 (06): : 775 - 786
  • [4] New optical solitons in high-order dispersive cubic-quintic nonlinear Schrodinger equation
    Li, HM
    Xu, YS
    Lin, J
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2004, 41 (06) : 829 - 832
  • [5] Dynamics of cubic-quintic nonlinear Schrodinger equation with different parameters
    Hua, Wei
    Liu, Xue-Shen
    Liu, Shi-Xing
    CHINESE PHYSICS B, 2016, 25 (05)
  • [6] Existence, stability, and scattering of bright vortices in the cubic-quintic nonlinear Schrodinger equation
    Caplan, R. M.
    Carretero-Gonzalez, R.
    Kevrekidis, P. G.
    Malomed, B. A.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2012, 82 (07) : 1150 - 1171
  • [7] New Exact Solutions for High Dispersive Cubic-Quintic Nonlinear Schrodinger Equation
    Xie, Yongan
    Tang, Shengqiang
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [8] Dispersive shock waves propagating in the cubic-quintic derivative nonlinear Schrodinger equation
    Kengne, E.
    Lakhssassi, A.
    Nguyen-Ba, T.
    Vaillancourt, R.
    CANADIAN JOURNAL OF PHYSICS, 2010, 88 (01) : 55 - 66
  • [9] STABILITY OF EXACT SOLUTIONS OF THE CUBIC-QUINTIC NONLINEAR SCHRODINGER EQUATION WITH PERIODIC POTENTIAL
    Kengne, E.
    Vaillancourt, R.
    NONLINEAR OSCILLATIONS, 2011, 13 (04): : 569 - 583
  • [10] Generation of switchable domain wall and Cubic-Quintic nonlinear Schrodinger equation dark pulse
    Tiu, Z. C.
    Suthaskumar, M.
    Zarei, A.
    Tan, S. J.
    Ahmad, H.
    Harun, S. W.
    OPTICS AND LASER TECHNOLOGY, 2015, 73 : 127 - 129