Design of industrially scalable microtubular solid oxide fuel cells based on an extruded support

被引:48
作者
Monzon, H. [1 ]
Laguna-Bercero, M. A. [1 ]
Larrea, A. [1 ]
Arias, B. I. [2 ]
Varez, A. [2 ]
Levenfeld, B. [2 ]
机构
[1] Univ Zaragoza, CSIC, ICMA, E-50018 Zaragoza, Spain
[2] Univ Carlos III Madrid, Dpto Ciencia & Ingn Mat, Leganes 28911, Spain
关键词
SOFC; Powder extrusion moulding; Microtubular; NiO; YSZ; IMPEDANCE SPECTROSCOPY; FABRICATION; SOFC; CATHODES;
D O I
10.1016/j.ijhydene.2014.01.010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The current work describes the adaptation of an existing lab-scale cell production method for an anode supported microtubular solid oxide fuel cell to an industrially ready and easily scalable method using extruded supports. For this purpose, Ni-YSZ (yttria stabilized zirconia) anode is firstly manufactured by Powder Extrusion Moulding (PEM). Feedstock composition, extruding parameters and binder removal procedure are adapted to obtain the tubular supports. The final conditions for this process were: feedstock solid load of 65 vol%; a combination of solvent debinding in heptane and thermal debinding at 600 degrees C. Subsequently, the YSZ electrolyte layer is deposited by dip coating and the sintering parameters are optimized to achieve a dense layer at 1500 degrees C during 2 h. For the cathode, an LSM (lanthanum strontium manganite)-YSZ layer with an active area of similar to 1 cm(2) is deposited by dip coating. Finally, the electrochemical performance of the cell is measured using pure humidified hydrogen as fuel. The measured power density of the cell at 0.5 V was 0.7 W cm(-2) at 850 degrees C. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:5470 / 5476
页数:7
相关论文
共 25 条
[11]   Performance and Aging of Microtubular YSZ-based Solid Oxide Regenerative Fuel Cells [J].
Laguna-Bercero, M. A. ;
Campana, R. ;
Larrea, A. ;
Kilner, J. A. ;
Orera, V. M. .
FUEL CELLS, 2011, 11 (01) :116-123
[12]   Steam Electrolysis Using a Microtubular Solid Oxide Fuel Cell [J].
Laguna-Bercero, M. A. ;
Campana, R. ;
Larrea, A. ;
Kilner, J. A. ;
Orera, V. M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (06) :B852-B855
[13]  
Larminie A., 2003, FUEL CELL SYSTEMS EX
[14]   Review of the micro-tubular solid oxide fuel cell (Part II: Cell design issues and research activities) [J].
Lawlor, V. .
JOURNAL OF POWER SOURCES, 2013, 240 :421-441
[15]  
Lee SB, 2008, INT J HYDROGEN ENERG, V33, P2330, DOI 10.1016/j.ijhydene.2008.02.034
[16]   Fabrication of Ni-YSZ anode supported tubular SOFC through iso-pressing and co-firing route [J].
Mahata, T. ;
Nair, S. R. ;
Lenka, R. K. ;
Sinha, P. K. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (04) :3874-3882
[17]   Study of thermal effects on the performance of micro-tubular solid-oxide fuel cells [J].
Mirahmadi, Amin ;
Valefi, Kia .
IONICS, 2011, 17 (09) :767-783
[18]   Redox-cycling studies of anode-supported microtubular solid oxide fuel cells [J].
Monzon, H. ;
Laguna-Bercero, M. A. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (08) :7262-7270
[19]   Oxygen transfer processes in (La,Sr)MnO3/Y2O3-stabilized ZrO2 cathodes:: an impedance spectroscopy study [J].
Murray, EP ;
Tsai, T ;
Barnett, SA .
SOLID STATE IONICS, 1998, 110 (3-4) :235-243
[20]   Manufacturing of anode-supported tubular solid oxide fuel cells by a new shaping technique using aqueous gel-casting [J].
Navarro, M. E. ;
Capdevila, X. G. ;
Morales, M. ;
Roa, J. J. ;
Segarra, M. .
JOURNAL OF POWER SOURCES, 2012, 200 :45-52