Low-Power Light Guiding and Localization in Optoplasmonic Chains Obtained by Directed Self-Assembly

被引:8
作者
Ahn, Wonmi
Zhao, Xin
Hong, Yan
Reinhard, Bjoern M. [1 ]
机构
[1] Boston Univ, Dept Chem, 590 Commonwealth Ave, Boston, MA 02215 USA
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
关键词
OPTICAL-WAVE-GUIDE; ELECTROMAGNETIC ENERGY-TRANSPORT; WHISPERING-GALLERY MODES; NANOPARTICLE CHAINS; PLASMON; PROPAGATION; RESONATOR; GOLD; SIZE;
D O I
10.1038/srep22621
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Optoplasmonic structures contain plasmonic components embedded in a defined photonic environment to create synergistic interactions between photonic and plasmonic components. Here, we show that chains of optical microspheres containing gold nanoparticles in their evanescent field combine the light guiding properties of a microsphere chain with the light localizing properties of a plasmonic nanoantenna. We implement these materials through template guided self-assembly and investigate their fundamental electromagnetic working principles through combination of electromagnetic simulations and experimental characterization. We demonstrate that optoplasmonic chains implemented by directed self-assembly achieve a significant reduction in guiding losses when compared with conventional plasmonic waveguides and, at the same time, retain the light localizing properties of plasmonic antennas at pre-defined locations. The results reinforce the potential of optoplasmonic structures for realizing low-loss optical interconnects with high bandwidth.
引用
收藏
页数:12
相关论文
共 60 条
[11]   Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits [J].
Boriskina, Svetlana V. ;
Reinhard, Bjoern M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (08) :3147-3151
[12]   Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit [J].
Brongersma, ML ;
Hartman, JW ;
Atwater, HA .
PHYSICAL REVIEW B, 2000, 62 (24) :16356-16359
[13]   Tailoring Plasmon Coupling in Self-Assembled One-Dimensional Au Nanoparticle Chains through Simultaneous Control of Size and Gap Separation [J].
Chen, Tianhong ;
Pourmand, Mahshid ;
Feizpour, Amin ;
Cushman, Bradford ;
Reinhard, Bjoern M. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (13) :2147-2152
[14]   Exciton-Plasmon Interactions in Quantum Dot-Gold Nanoparticle Structures [J].
Cohen-Hoshen, Eyal ;
Bryant, Garnett W. ;
Pinkas, Iddo ;
Sperling, Joseph ;
Bar-Joseph, Israel .
NANO LETTERS, 2012, 12 (08) :4260-4264
[15]   Plasmonic interconnects versus conventional interconnects: a comparison of latency, crosstalk and energy costs [J].
Conway, J. A. ;
Sahni, S. ;
Szkopek, T. .
OPTICS EXPRESS, 2007, 15 (08) :4474-4484
[16]   Compact Metallo-Dielectric Optical Antenna for Ultra Directional and Enhanced Radiative Emission [J].
Devilez, Alexis ;
Stout, Brian ;
Bonod, Nicolas .
ACS NANO, 2010, 4 (06) :3390-3396
[17]   Water-Dependent Photonic Bandgap in Silica Artificial Opals [J].
Gallego-Gomez, Francisco ;
Blanco, Alvaro ;
Canalejas-Tejero, Victor ;
Lopez, Cefe .
SMALL, 2011, 7 (13) :1838-1845
[18]   Metallic nanoparticle on micro ring resonator for bio optical detection and sensing [J].
Haddadpour, Ali ;
Yi, Yasha .
BIOMEDICAL OPTICS EXPRESS, 2010, 1 (02) :378-384
[19]   Connecting the dots: Reinventing optics for nanoscale dimensions [J].
Halas, Naomi J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (10) :3643-3644
[20]   Electromagnetic fields around silver nanoparticles and dimers [J].
Hao, E ;
Schatz, GC .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (01) :357-366